![]() Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylatio
专利摘要:
The present invention relates to a nucleic acid sequence, comprising or coding for a coding region, encoding at least one peptide or protein comprising a therapeutic protein or a fragment, variant or derivative thereof, at least one histone stem-loop and a poly(A) sequence or a polyadenylation signal. Furthermore the present invention provides the use of the nucleic acid for increasing the expression of said encoded peptide or protein, particularly for the use in gene therapy. It also discloses its use for the preparation of a pharmaceutical composition, e.g. for use in gene therapy, particularly in the treatment of diseases which are in need of a treatment with a therapeutic peptide or protein, preferably as defined herein. The present invention further describes a method for increasing the expression of a peptide or protein comprising a therapeutic protein or a fragment, variant or derivative thereof, using the nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal. 公开号:AU2013220749A1 申请号:U2013220749 申请日:2013-02-15 公开日:2014-07-24 发明作者:Jochen Probst;Thomas Schlake;Andreas Thess 申请人:Curevac AG; IPC主号:C12N15-68
专利说明:
WO 2013/120629 PCT/EP2013/000461 1 5 Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein The present invention relates to a nucleic acid sequence, comprising or coding for a coding 10 region, encoding at least one peptide or protein comprising a therapeutic protein or a fragment, variant or derivative thereof, at least one histone stem-loop and a poly(A) sequence or a polyadenylation signal. Furthermore, the present invention provides the use of the nucleic acid for increasing the expression of said encoded peptide or protein, particularly for the use in gene therapy. It also discloses its use for the preparation of a 15 pharmaceutical composition, e.g. for use in gene therapy, particularly in the treatment of diseases which are in need of a treatment with a therapeutic peptide or protein, preferably as defined herein. The present invention further describes a method for increasing the expression of a peptide or protein comprising a therapeutic protein or a fragment, variant or derivative thereof, using the nucleic acid comprising or coding for a histone stem-loop and 20 a poly(A) sequence or a polyadenylation signal. Gene therapy means the use of nucleic acids as a pharmaceutical agent to treat a disease. It derives its name from the idea that nucleic acids can be used to supplement or alter the expression of a gene within an individual's cells as a therapy to treat a disease. The most 25 common form of gene therapy involves using nucleic acids that encode a functional, therapeutic protein in order to replace a mutated gene. Other forms involve direct correction of a mutation, or using nucleic acids that encode a therapeutic protein drug to provide treatment. 30 Gene therapy is a method of molecular medicine which already has been proven in the therapy and prevention of diseases and generally exhibits a considerable effect on daily medical practice, in particular on the treatment of diseases as mentioned herein. Gene therapy is based on the introduction of nucleic acids into the patient's cells or tissue and WO 2013/120629 PCT/EP2013/000461 2 subsequent processing of the information coded for by the nucleic acid that has been introduced into the cells or tissue, that is to say the (protein) expression of the desired polypeptides. 5 Gene therapy may be beneficial for a lot of inherited or acquired diseases, inter alia infectious diseases, neoplasms (e.g. cancer or tumour diseases), diseases of the blood and blood-forming organs, endocrine, nutritional and metabolic diseases, diseases of the nervous system, diseases of the circulatory system, diseases of the respiratory system, diseases of the digestive system, diseases of the skin and subcutaneous tissue, diseases of 10 the musculoskeletal system and connective tissue, and diseases of the genitourinary system. In gene therapy approaches, typically DNA is used even though RNA is also known in recent developments. Importantly, in all these gene therapy approaches mRNA functions as messenger for the sequence information of the encoded protein, irrespectively if DNA, viral 15 RNA or mRNA is used. In general RNA is considered an unstable molecule: RNases are ubiquitous and notoriously difficult to inactivate. Furthermore, RNA is also chemically more labile than DNA. Thus, it is perhaps surprising that the "default state" of an mRNA in a eukaryotic cell is 20 characterized by a relative stability and specific signals are required to accelerate the decay of individual mRNAs. The main reason for this finding appears to be that mRNA decay within cells is catalyzed almost exclusively by exonucleases. However, the ends of eukaryotic mRNAs are protected against these enzymes by specific terminal structures and their associated proteins: a m7GpppN CAP at the 5' end and typically a poly(A) sequence at 25 the 3' end. Removal of these two terminal modifications is thus considered rate limiting for mRNA decay. Although a stabilizing element has been characterized in the 3' UTR of the alpha-globin mRNA, RNA sequences affecting turnover of eukaryotic mRNAs typically act as a promoter of decay usually by accelerating deadenylation (reviewed in Meyer, S., C. Temme, etal. (2004), Crit Rev Biochem Mol Biol 39(4): 197-216.). 30 As mentioned above, the 5' ends of eukaryotic mRNAs are typically modified posttranscriptionally to carry a methylated CAP structure, e.g. m7GpppN. Aside from roles in RNA splicing, stabilization, and transport, the CAP structure significantly enhances the WO 2013/120629 PCT/EP2013/000461 3 recruitment of the 40S ribosomal subunit to the 5' end of the mRNA during translation initiation. The latter function requires recognition of the CAP structure by the eukaryotic initiation factor complex elF4F. The poly(A) sequence additionally stimulates translation via increased 40S subunit recruitment to mRNAs, an effect that requires the intervention of 5 poly(A) binding protein (PABP). PABP, in turn, was recently demonstrated to interact physically with eIF4G, which is part of the CAP-bound eIF4F complex. Thus, a closed loop model of translation initiation on capped, polyadenylated mRNAs was postulated (Michel, Y. M., D. Poncet, et a. (2000), J Biol Chem 275(41): 32268-76.). 10 Nearly all eukaryotic mRNAs end with such a poly(A) sequence that is added to their 3' end by the ubiquitous cleavage/polyadenylation machinery. The presence of a poly(A) sequence at the 3' end is one of the most recognizable features of eukaryotic mRNAs. After cleavage, most pre-mRNAs, with the exception of replication-dependent histone transcripts, acquire a polyadenylated tail. In this context, 3' end processing is a nuclear co-transcriptional process 15 that promotes transport of mRNAs from the nucleus to the cytoplasm and affects the stability and the translation of mRNAs. Formation of this 3' end occurs in a two step reaction directed by the cleavage/polyadenylation machinery and depends on the presence of two sequence elements in mRNA precursors (pre-mRNAs); a highly conserved hexanucleotide AAUAAA (polyadenylation signal) and a downstream G/U-rich sequence. In a first step, pre 20 mRNAs are cleaved between these two elements. In a second step tightly coupled to the first step the newly formed 3' end is extended by addition of a poly(A) sequence consisting of 200-250 adenylates which affects subsequently all aspects of mRNA metabolism, including mRNA export, stability and translation (Dominski, Z. and W. F. Marzluff (2007), Gene 396(2): 373-90.). 25 The only known exception to this rule are the replication-dependent histone mRNAs which end with a histone stem-loop instead of a poly(A) sequence. Exemplary histone stem-loop sequences are described in Lopez et a. (Divila L6pez, M., & Samuelsson, T. (2008), RNA (New York, N.Y.), 14(1), 1-10. doi:1 0.1 261/rna.782308.). 30 The stem-loops in histone pre-mRNAs are typically followed by a purine-rich sequence known as the histone downstream element (HDE). These pre-mRNAs are processed in the nucleus by a single endonucleolytic cleavage approximately 5 nucleotides downstream of WO 2013/120629 PCT/EP2013/000461 4 the stem-loop, catalyzed by the U7 snRNP through base pairing of the U7 snRNA with the HDE. The 3'-UTR sequence comprising the histone stem-loop structure and the histone downstream element (HDE) (binding site of the U7 snRNP) were usually termed as histone 3'-processing signal (see e.g. Chodchoy, N., N. B. Pandey, et al. (1991). Mol Cell Biol 11(1): 5 497-509.). Due to the requirement to package newly synthesized DNA into chromatin, histone synthesis is regulated in concert with the cell cycle. Increased synthesis of histone proteins during S phase is achieved by transcriptional activation of histone genes as well as 10 posttranscriptional regulation of histone mRNA levels. It could be shown that the histone stem-loop is essential for all posttranscriptional steps of histone expression regulation. It is necessary for efficient processing, export of the mRNA into the cytoplasm, loading onto polyribosomes, and regulation of mRNA stability. 15 In the above context, a 32 kDa protein was identified, which is associated with the histone stem-loop at the 3'-end of the histone messages in both the nucleus and the cytoplasm. The expression level of this stem-loop binding protein (SLBP) is cell-cycle regulated and is highest during S-phase when histone mRNA levels are increased. SLBP is necessary for efficient 3'-end processing of histone pre-mRNA by the U7 snRNP. After completion of 20 processing, SLBP remains associated with the stem-loop at the end of mature histone mRNAs and stimulates their translation into histone proteins in the cytoplasm. (Dominski, Z. and W. F. Marzluff (2007), Gene 396(2): 373-90). Interestingly, the RNA binding domain of SLBP is conserved throughout metazoa and protozoa (Divila L6pez, M., & Samuelsson, T. (2008), RNA (New York, N.Y.), 14(1), 1-10. doi:10.1261/rna.782308) and it could be 25 shown that its binding to the histone stem-loop sequence is dependent on the stem-loop structure and that the minimum binding site contains at least 3 nucleotides 5' and 2 nucleotides 3' of the stem-loop (Pandey, N. B., et al. (1994), Molecular and Cellular Biology, 14(3), 1709-1720 and Williams, A. S., & Marzluff, W. F., (1995), Nucleic Acids Research, 23(4), 654-662.). 30 Even though histone genes are generally classified as either "replication-dependent", giving rise to mRNA ending in a histone stem-loop, or "replacement-type", giving rise to mRNA bearing a poly(A)-tail instead, naturally occurring mRNAs containing both a histone stem- WO 2013/120629 PCT/EP2013/000461 5 loop and poly(A) or oligo(A) 3' thereof have been identified in some very rare cases. Sanchez et al examined the effect of naturally occurring oligo(A) tails appended 3' of the histone stem-loop of histone mRNA during Xenopus oogenesis using Luciferase as a reporter protein and found that the oligo(A) tail is an active part of the translation repression 5 mechanism that silences histone mRNA during oogenesis and its removal is part of the mechanism that activates translation of histone mRNAs (Sanchez, R. and W. F. Marzluff (2004), Mol Cell Biol 24(6): 2513-25). Furthermore, the requirements for regulation of replication dependent histones at the level 10 of pre-mRNA processing and mRNA stability have been investigated using artificial constructs coding for the marker protein alpha Globin, taking advantage of the fact that the globin gene contains introns as opposed to the intron-less histone genes. For this purpose constructs were generated in which the alpha globin coding sequence was followed by a histone stem-loop signal (histone stem-loop followed by the histone downstream element) 15 and a polyadenylation signal (Whitelaw, E., et a. (1986). Nucleic Acids Research, 14(17), 7059-7070.; Pandey, N. B., & Marzluff, W. F. (1987). Molecular and Cellular Biology, 7(12), 4557-4559.; Pandey, N. B., et a (1990). Nucleic Acids Research, 18(11), 3161 3170). 20 in another approach L~scher et al. investigated the cell-cycle dependent regulation of a recombinant histone H4 gene. Constructs were generated in which the H4 coding sequence was followed by a histone stem-loop signal and a polyadenylation signal, the two processing signals incidentally separated by a galactokinase coding sequence (L~scher, B. et a!, (1985). Proc. Natl. Acad. Sci. USA, 82(13), 4389-4393). 25 Additionally, Stauber et a! identified the minimal sequence required to confer cell-cycle regulation on histone H4 mRNA levels. For these investigations constructs were used, comprising a coding sequence for the selection marker Xanthine:guanine phosphoribosyl transferase (GPT) preceding a histone stem-loop signal followed by a polyadenylation signal 30 (Stauber, C. et al, (1986). EMBO J, 5(12), 3297-3303). Examining histone pre-mRNA processing Wagner et al. identified factors required for cleavage of histone pre-mRNAs using a reporter construct placing EGFP between a histone WO 2013/120629 PCT/EP2013/000461 6 stem-loop signal and a polyadenylation signal, such that EGFP was expressed only in case histone pre-mRNA processing was disrupted (Wagner, E. J. et a/., (2007). Mol Cell 28(4), 692-9). 5 To be noted, translation of polyadenylated mRNA usually requires the 3' poly(A) sequence to be brought into proximity of the 5' CAP. This is mediated through protein-protein interaction between the poly(A) binding protein and eukaryotic initiation factor eIF4G. With respect to replication-dependent histone mRNAs, an analogous mechanism has been uncovered. In this context, Gallie et a. show that the histone stem-loop is functionally 10 similar to a poly(A) sequence in that it enhances translational efficiency and is co dependent on a 5'-CAP in order to establish an efficient level of translation. They showed that the histone stem-loop is sufficient and necessary to increase the translation of a reporter mRNA in transfected Chinese hamster ovary cells but must be positioned at the 3'-terminus in order to function optimally. Therefore, similar to the poly(A) tail on other mRNAs, the 3' 15 end of these histone mRNAs appears to be essential for translation in vivo and is functionally analogous to a poly(A) tail (Gallie, D. R., Lewis, N. J., & Marzluff, W. F. (1996), Nucleic Acids Research, 24(10), 1954-1962). Additionally, it could be shown that SLBP is bound to the cytoplasmic histone mRNA and is 20 required for its translation. Even though SLBP does not interact directly with eIF4G, the domain required for translation of histone mRNA interacts with the recently identified protein SLIP1. In a further step, SLIP1 interacts with eIF4G and allows to circularize histone mRNA and to support efficient translation of histone mRNA by a mechanism similar to the translation of polyadenylated mRNAs. 25 As mentioned above, gene therapy approaches normally use DNA to transfer the coding information into the cell which is then transcribed into mRNA, carrying the naturally occurring elements of an mRNA, particularly the 5'-CAP structure and the 3' poly(A) sequence to ensure expression of the encoded therapeutic or antigenic protein. 30 However, in many cases expression systems based on the introduction of such nucleic acids into the patient's cells or tissue and the subsequent expression of the desired polypeptides coded for by these nucleic acids do not exhibit the desired, or even the required, level of WO 2013/120629 PCT/EP2013/000461 7 expression which may allow for an efficient therapy, irrespective as to whether DNA or RNA is used. In the prior art, different attempts have hitherto been made to increase the yield of the 5 expression of an encoded protein, in particular by use of improved expression systems, both in vitro and/or in vivo. Methods for increasing expression described generally in the prior art are conventionally based on the use of expression vectors or cassettes containing specific promoters and corresponding regulation elements. As these expression vectors or cassettes are typically limited to particular cell systems, these expression systems have to be adapted 10 for use in different cell systems. Such adapted expression vectors or cassettes are then usually transfected into the cells and typically treated in dependence of the specific cell line. Therefore, preference is given primarily to those nucleic acid molecules which are able to express the encoded proteins in a target cell by systems inherent in the cell, independent of promoters and regulation elements which are specific for particular cell types. In this 15 context, there can be distinguished between mRNA stabilizing elements and elements which increase translation efficiency of the mRNA. mRNAs which are optimized in their coding sequence and which are in general suitable for such a purpose are described in application WO 02/098443 (CureVac GmbH). For 20 example, WO 02/098443 describes mRNAs that are stabilised in general form and optimised for translation in their coding regions. WO 02/098443 further discloses a method for determining sequence modifications. WO 02/098443 additionally describes possibilities for substituting adenine and uracil nucleotides in mRNA sequences in order to increase the guanine/cytosine (G/C) content of the sequences. According to WO 02/098443, such 25 substitutions and adaptations for increasing the G/C content can be used for gene therapeutic applications but also genetic vaccines in the treatment of cancer or infectious diseases. In this context, WO 02/098443 generally mentions sequences as a base sequence for such modifications, in which the modified mRNA codes for at least one biologically active peptide or polypeptide, which is translated in the patient to be treated, for example, 30 either not at all or inadequately or with faults. Alternatively, WO 02/098443 proposes mRNAs coding for antigens e.g. therapeutic proteins or viral antigens as a base sequence for such modifications. WO 2013/120629 PCT/EP2013/000461 8 in a further approach to increase the expression of an encoded protein the application WO 2007/036366 describes the positive effect of long poly(A) sequences (particularly longer than 120 bp) and the combination of at least two 3' untranslated regions of the beta globin gene on mRNA stability and translational activity. 5 However, even though all these latter prior art documents already try to provide quite efficient tools for gene therapy approaches and additionally improved mRNA stability and translational activity, there still remains the problem of a generally lower stability of RNA based applications versus DNA vaccines and DNA based gene therapeutic approaches. 10 Accordingly, there still exists a need in the art to provide improved tools for gene therapy approaches or as a supplementary therapy for conventional treatments as discussed above, which allow for better provision of encoded proteins in vivo, e.g. via a further improved mRNA stability and/or translational activity, preferably for gene therapy. 15 Furthermore despite of all progress in the art, efficient expression of an encoded peptide or protein in cell-free systems, cells or organisms (recombinant expression) is still a challenging problem. The object underlying the present invention is, therefore, to provide additional and/or 20 alternative methods to increase expression of an encoded protein, preferably via further stabilization of the mRNA and/or an increase of the translational efficiency of such an mRNA with respect to such nucleic acids known from the prior art for the use in gene therapy in the therapeutic or prophylactic treatment of inherited or acquired diseases, particulary as defined herein. 25 This object is solved by the subject matter of the attached claims. Particularly, the object underlying the present invention is solved according to a first aspect by an inventive nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein which comprises a 30 therapeutic protein or a fragment, variant or derivative thereof; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal, preferably for increasing the expression of said encoded peptide or protein. WO 2013/120629 PCT/EP2013/000461 9 Alternatively, any appropriate stem loop sequence other than a histone stem loop sequence (derived from histone genes, in particular histone genes of the families Hi, H2A, H2B, H3 and H4) may be employed by the present invention in all of its aspects and embodiments. 5 In this context it is particularly preferred that the inventive nucleic acid according to the first aspect of the present invention is produced at least partially by DNA or RNA synthesis, preferably as described herein or is an isolated nucleic acid. The present invention is based on the surprising finding of the present inventors, that the 10 combination of a poly(A) sequence or polyadenylation signal and at least one histone stem loop, even though both representing alternative mechanisms in nature, acts synergistically as this combination increases the protein expression manifold above the level observed with either of the individual elements. The synergistic effect of the combination of poly(A) and at least one histone stem-loop is seen irrespective of the order of poly(A) and histone stem 15 loop and irrespective of the length of the poly(A) sequence. Therefore it is particularly preferred that the inventive nucleic acid sequence comprises or codes for a) a coding region, encoding at least one peptide or protein which comprises a therapeutic protein or a fragment, variant or derivative thereof; b) at least one histone stem 20 loop, and c) a poly(A) sequence or polyadenylation sequence; preferably for increasing the expression level of said encoded peptide or protein, wherein the encoded protein is preferably no histone protein, in particular no histone protein of the H4, H3, H2A and/or H2B histone family or a fragment, derivative or variant thereof retaining histone(-like) function), namely forming a nucleosome. Also, the encoded protein typically does not 25 correspond to a histone linker protein of the H1 histone family. The inventive nucleic acid molecule does typically not contain any regulatory signals (5' and/or, particularly, 3') of a mouse histone gene, in particular not of a mouse histone gene H2A and, further, most preferably not of the mouse histone gene H2A614. In particular, it does not contain a histone stem loop and/or a histone stem loop processing signal from a mouse histone gene, 30 in particular not of mouse histone gene H2A und, most preferably not of mouse histone gene H2A614. WO 2013/120629 PCT/EP2013/000461 10 Also, the inventive nucleic acid typically does not provide a reporter protein (e.g. Luciferase, GFP, EGFP, p-Galactosidase, particularly EGFP), galactokinase (galK) and/or marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:Guanine phosphoribosyl transferase (GPT)) or a bacterial reporter protein, e.g. chloramphenicol 5 acetyl transferase (CAT) or other bacterial antibiotics resistance proteins, e.g. derived from the bacterial neo gene in its element (a). A reporter, marker or selection protein is typically understood not to be a therapeutic protein according to the invention. A reporter, marker or selection protein or its underlying gene is commonly used as a research tool in bacteria, cell culture, animals or plants. They 10 confer on organisms (preferably heterologously) expressing them an easily identifiable property, which may be measured or which allows for selection. Specifically, marker or selection proteins exhibit a selectable function. Typically, such selection, marker or reporter proteins do not naturally occur in humans or other mammals, but are derived from other organisms, in particular from bacteria or plants. Accordingly, proteins with selection, 15 marker or reporter function originating from species other than mammals, in particular other than humans, are preferably excluded from being understood as "therapeutic protein" according to the present invention. In particular, a selection, marker or reporter protein allows to identify transformed cells by in vitro assays based e.g. on fluorescence or other spectroscopic techniques and resistance towards antibiotics. Selection, reporter or marker 20 genes awarding such properties to transformed cells are therefore typically not understood to be a therapeutic protein according to the invention. In any case, reporter, marker or selection proteins do usually not exert any therapeutic effect. If any single reporter, marker or selection protein should nevertheless do so (in addition to its reporter, selection or marker function), such a reporter, marker or selection 25 protein is preferably not understood to be a "therapeutic protein" within the meaning of the present invention. In contrast, a therapeutic protein (including its fragments, variants and derivatives), in particular excluding histone genes of the families H1, H2A, H2B, H3 and H4, according to the present invention does typically not exhibit a selection, marker or reporter function. If 30 any single "therapeutic protein" nevertheless should do so (in addition to its therapeutic function), such a therapeutic protein is preferably not understood to be a "selection, marker or reporter protein" within the meaning of the present invention. WO 2013/120629 PCT/EP2013/000461 11 It is most preferably understood that a therapeutic protein according to the invention is derived from mammals, in particular humans, and does not qualify as selection, marker or reporter protein. 5 Accordingly, it is preferred that the coding region (a) encoding at least one peptide or protein is heterologous to at least (b) the at least one histone stem loop, or more broadly, to any appropriate stem loop. In other words, "heterologous" in the context of the present invention means that the at least one stem loop sequence does not naturally occur as a (regulatory) sequence (e.g. at the 3'UTR) of the specific gene, which encodes the 10 (therapeutic) protein or peptide of element (a) of the inventive nucleic acid. Accordingly, the (histone) stem loop of the inventive nucleic acid is derived preferably from the 3' UTR of a gene other than the one comprising the coding region of element (a) of the inventive nucleic acid. E.g., the coding region of element (a) will not encode a histone protein or a fragment, variant or derivative thereof (retaining the function of a histone protein), if the 15 inventive nucleic is heterologous, but will encode any other peptide or sequence (of the same or another species) which exerts a biological function, preferably therapeutic function other than a histone(-like) function, e.g. will encode an therapeutic protein (exerting a therapeutic function, e.g. in terms endocrine disorders, replacing defective endogenous, e.g. mammalian, in particular human proteins). 20 In this context it is particularly preferred that the inventive nucleic acid comprises or codes for in 5'- to 3'-direction: a) a coding region, encoding at least one peptide or protein which comprises a therapeutic protein or a fragment, variant or derivative thereof; 25 b) at least one histone stem-loop, optionally without a histone downstream element (HIDE) 3' to the histone stem-loop c) a poly(A) sequence or a polyadenylation signal. The term "histone downstream element (HDE) refers to a purine-rich polynucleotide stretch 30 of about 15 to 20 nucleotides 3' of naturally occurring histone stem-loops, which represents the binding site for the U7 snRNA involved in processing of histone pre-mRNA into mature histone mRNA. For example in sea urchins the HDE is CAAGAAAGA (Dominski, Z. and W. F. Marzluff (2007), Gene 396(2): 373-90). WO 2013/120629 PCT/EP2013/000461 12 Furthermore it is preferable that the inventive nucleic acid according to the first aspect of the present invention does not comprise an intron. 5 In another particular preferred embodiment, the inventive nucleic acid sequence according to the first aspect of the present invention comprises or codes for from 5' to 3': a) a coding region, preferably encoding at least one peptide or protein which comprises a therapeutic protein or a fragment, variant or derivative thereof; c) a poly(A) sequence; and 10 b) at least one histone stem-loop. The inventive nucleic acid sequence according to the first embodiment of the present invention comprise any suitable nucleic acid, selected e.g. from any (single-stranded or double-stranded) DNA, preferably, without being limited thereto, e.g. genomic DNA, 15 plasmid DNA, single-stranded DNA molecules, double-stranded DNA molecules, or may be selected e.g. from any PNA (peptide nucleic acid) or may be selected e.g. from any (single-stranded or double-stranded) RNA, preferably a messenger RNA (mRNA); etc. The inventive nucleic acid sequence may also comprise a viral RNA (vRNA). However, the inventive nucleic acid sequence may not be a viral RNA or may not contain a viral RNA. 20 More specifically, the inventive nucleic acid sequence may not contain viral sequence elements, e.g. viral enhancers or viral promotors (e.g. no inactivated viral promoter or sequence elements, more specifically not inactivated by replacement strategies), or other viral sequence elements, or viral or retroviral nucleic acid sequences. More specifically, the inventive nucleic acid sequence may not be a retroviral or viral vector or a modified 25 retroviral or viral vector. In any case, the inventive nucleic acid sequence may or may not contain an enhancer and/or promoter sequence, which may be modified or not or which may be activated or not. The enhancer and or promoter may be plant expressible or not expressible, and/or in 30 eukaryotes expressible or not expressible and/or in prokaryotes expressible or not expressible. The inventive nucleic acid sequence may contain a sequence encoding a (self splicing) ribozyme or not. WO 2013/120629 PCT/EP2013/000461 13 In specific embodiments the inventive nucleic acid sequence may be or may comprise a self-replicating RNA (replicon). Preferably, the inventive nucleic acid sequence is a plasmid DNA, or an RNA, particularly 5 an mRNA. In particular embodiments of the first aspect of the present invention, the inventive nucleic acid is a nucleic acid sequence comprised in a nucleic acid suitable for in vitro transcription, particularly in an appropriate in vitro transcription vector (e.g. a plasmid or a 10 linear nucleic acid sequence comprising specific promoters for in vitro transcription such as T3, T7 or Sp6 promoters). In further particular preferred embodiments of the first aspect of the present invention, the inventive nucleic acid is comprised in a nucleic acid suitable for transcription and/or 15 translation in an expression system (e.g. in an expression vector or plasmid), particularly a prokaryotic (e.g. bacteria like E. coh) or eukaryotic (e.g. mammalian cells like CHO cells, yeast cells or insect cells or whole organisms like plants or animals) expression system. The term "expression system" means a system (cell culture or whole organisms) which is 20 suitable for production of peptides, proteins or RNA particularly mRNA (recombinant expression). The inventive nucleic acid sequence according to the first aspect of the present invention comprises or codes for at least one (histone) stem-loop.A stem-loop, in general (irrespective 25 of whether it is a histone stem loop or not), can occur in single-stranded DNA or, more commonly, in RNA. The structure is also known as a hairpin or hairpin loop and usually consists of a stem and a (terminal) loop within a consecutive sequence, wherein the stem is formed by two neighbored entirely or partially reverse complementary sequences separated by a short sequence as sort of spacer, which builds the loop of the stem-loop structure. The 30 two neighbored entirely or partially reverse complementary sequences may be defined as e.g. stem loop elements stem and stem2. The stem loop is formed when these two neighbored entirely or partially reverse complementary sequences, e.g. stem loop elements stem and stem2, form base-pairs with each other, leading to a double stranded nucleic WO 2013/120629 PCT/EP2013/000461 14 acid sequence stretch comprising an unpaired loop at its terminal ending formed by the short sequence located between stem loop elements stem and stem2 on the consecutive sequence. The unpaired loop thereby typically represents a region of the nucleic acid which is not capable of base pairing with either of these stem loop elements. The resulting 5 lollipop-shaped structure is a key building block of many RNA secondary structures. The formation of a stem-loop structure is thus dependent on the stability of the resulting stem and loop regions, wherein the first prerequisite is typically the presence of a sequence that can fold back on itself to form a paired double strand. The stability of paired stem loop elements is determined by the length, the number of mismatches or bulges it contains (a 10 small number of mismatches is typically tolerable, especially for a longer double stranded stretch), and the base composition of the paired region. In the context of the present invention, a loop length of 3 to 15 bases is conceivable, while a more preferred loop length is 3-10 bases, more preferably 3 to 8, 3 to 7, 3 to 6 or even more preferably 4 to 5 bases, and most preferably 4 bases. The stem sequence forming the double stranded structure 15 typically has a length of between 5 to 10 bases, more preferably, between 5 to 8 bases. In the context of the present invention, a histone stem-loop is typically derived from histone genes (e.g. genes from the histone families HI, H2A, H2B, H3, H4) and comprises an intramolecular base pairing of two neighbored entirely or partially reverse complementary 20 sequences, thereby forming a stem-loop. Typically, a histone 3' UTR stem-loop is an RNA element involved in nucleocytoplasmic transport of the histone mRNAs, and in the regulation of stability and of translation efficiency in the cytoplasm. The mRNAs of metazoan histone genes lack polyadenylation and a poly-A tail, instead 3' end processing occurs at a site between this highly conserved stem-loop and a purine rich region around 20 25 nucleotides downstream (the histone downstream element, or HDE). The histone stem-loop is bound by a 31 kDa stem-loop binding protein (SLBP - also termed the histone hairpin binding protein, or HBP). Such histone stem-loop structures are preferably employed by the present invention in combination with other sequence elements and structures, which do not occur naturally (which means in untransformed living organisms/cells) in histone genes, 30 but are combined - according to the invention - to provide an artificial, heterologous nucleic acid. Accordingly, the present invention is particularly based on the finding that an artificial (non-native) combination of a histone stem-loop structure with other heterologous sequence elements, which do not occur in histone genes or metazoan histone genes and are WO 2013/120629 PCT/EP2013/000461 15 isolated from operational and/or regulatory sequence regions (influencing transcription and/or translation) of genes coding for proteins other than histones, provide advantageous effects. Accordingly, one aspect of the invention provides the combination of a histone stem-loop structure with a poly(A) sequence or a sequence representing a polyadenylation 5 signal (3'-terminal of a coding region), which does not occur in metazoan histone genes. According to another preferred aspect of the invention, a combination of a histone stem loop structure with a coding region coding for a therapeutic protein, which does, preferably not occur in metazoan histone genes, is provided herewith (coding region and histone stem 10 loop sequence are heterologous). It is preferred, if such therapeutic proteins occur naturally in mammalians, preferably humans. In a still further preferred embodiment, all the elements (a), (b) and (c) of the inventive nucleic acid are heterologous to each other and are combined artificially from three different sources, e.g. (a) the therapeutic protein coding region from a human gene, (b) the histone stem loop from an untranlated region of a 15 metazoan, e.g. mammalian, non-human or human, histone gene and (c) the poly(A) sequence or the polyadenylation signal from e.g. an untranlated region of a gene other than a histone gene and other than the gene coding for the therapeutic protein according to element (a) of such an inventive nucleic acid. 20 A histone stem loop is, therefore, a stem-loop structure as described herein, which, if preferably functionally defined, exhibits/retains the property of binding to its natural binding partner, the stem-loop binding protein (SLBP - also termed the histone hairpin binding protein, or HBP). 25 According to the present invention the histone stem loop sequence according to component (b) of claim 1 may not derived from a mouse histone protein. More specifically, the histone stem loop sequence may not be derived from mouse histone gene H2A614. Also, the nucleic acid of the invention may neither contain a mouse histone stem loop sequence nor contain mouse histone gene H2A614. Further, the inventive nucleic acid sequence may not 30 contain a stem-loop processing signal, more specifically, a mouse histone processing signal and, most specifically, may not contain mouse stem loop processing signal H2kA614, even if the inventive nucleic acid sequence may contain at least one mammalian histone gene. WO 2013/120629 PCT/EP2013/000461 16 However, the at least one mammalian histone gene may not be Seq. ID No. 7 of WO 01/12824. According to one preferred embodiment of the first inventive aspect, the inventive nucleic acid 5 sequence comprises or codes for at least one histone stem-loop sequence, preferably according to at least one of the following formulae (1) or (11): formula (1) (stem-loop sequence without stem bordering elements): 10 [NO- 2 GN 3 _J] [NO. 4 (U/T)NO. 4 ] [N 3 _SCNO- 2 ] stem loop stem2 15 formula (II) (stem-loop sequence with stem bordering elements): N 1 _ 6 [No- 2 GN 3 _ 5 ] [NO_ 4 (UfT)NO_ 4 ] [N 3 _ 5 CN 0 2 ] N, 6 stem stem loop stem 2 stem2 20 bordering element bordering element wherein: stem or stem2 bordering elements N 1 . 6 is a consecutive sequence of 1 to 6, preferably of 25 2 to 6, more preferably of 2 to 5, even more preferably of 3 to 5, most preferably of 4 to 5 or 5 N, wherein each N is independently from another selected from a nucleotide selected from A, U, T, G and C, or a nucleotide analogue thereof; 30 stem [NO 2 GN 3 . 5 ] is reverse complementary or partially reverse complementary with element stem2, and is a consecutive sequence between of 5 to 7 nucleotides; WO 2013/120629 PCT/EP2013/000461 17 wherein NO 2 is a consecutive sequence of 0 to 2, preferably of 0 to 1, more preferably of 1 N, wherein each N is independently from another 5 selected from a nucleotide selected from A, U, T, G and C or a nucleotide analogue thereof; wherein N 3 . 5 is a consecutive sequence of 3 to 5, preferably of 4 to 5, more preferably of 4 N, 10 wherein each N is independently from another selected from a nucleotide selected from A, U, T, G and C or a nucleotide analogue thereof, and 15 wherein G is guanosine or an analogue thereof, and may be optionally replaced by a cytidine or an analogue thereof, provided that its complementary nucleotide cytidine in stem2 is replaced by guanosine; 20 loop sequence [NO,(Uf)N-] is located between elements stem and stem2, and is a consecutive sequence of 3 to 5 nucleotides, more preferably of 4 nucleotides; 25 wherein each No4 is independent from another a consecutive sequence of 0 to 4, preferably of 1 to 3, more preferably of 1 to 2 N, wherein each N is independently from another selected from a nucleotide selected from A, U, T, G and 30 C or a nucleotide analogue thereof; and wherein U/T represents uridine, or optionally thymidine; WO 2013/120629 PCT/EP2013/000461 18 stem2 [N 3 . 5 CN,-] is reverse complementary or partially reverse complementary with element stem, and is a consecutive sequence between of 5 to 7 nucleotides; 5 wherein N 3 . 5 is a consecutive sequence of 3 to 5, preferably of 4 to 5, more preferably of 4 N, wherein each N is independently from another selected from a nucleotide selected from A, U, 10 T, G and C or a nucleotide analogue thereof; wherein NO 2 is a consecutive sequence of 0 to 2, preferably of 0 to 1, more preferably of 1 N, wherein each N is independently from another 15 selected from a nucleotide selected from A, U, T, G or C or a nucleotide analogue thereof; and wherein C is cytidine or an analogue thereof, 20 and may be optionally replaced by a guanosine or an analogue thereof provided that its complementary nucleotide guanosine in stem is replaced by cytidine; wherein 25 stem and stem2 are capable of base pairing with each other forming a reverse complementary sequence, wherein base pairing may occur between stem and stem2, e.g. by Watson-Crick base pairing of nucleotides A and U/T or G and C or by non-Watson-Crick base pairing e.g. wobble base pairing, reverse Watson-Crick base pairing, Hoogsteen base pairing, reverse Hoogsteen base pairing or are capable of 30 base pairing with each other forming a partially reverse complementary sequence, wherein an incomplete base pairing may occur between stem and stem2, on the basis that one or more bases in one stem do not have a complementary base in the reverse complementary sequence of the other stem. WO 2013/120629 PCT/EP2013/000461 19 in the above context, a wobble base pairing is typically a non-Watson-Crick base pairing between two nucleotides. The four main wobble base pairs in the present context, which may be used, are guanosine-uridine, inosine-uridine, inosine-adenosine, inosine-cytidine 5 (G-U/T, l-U/T, I-A and I-C) and adenosine-cytidine (A-C). Accordingly, in the context of the present invention, a wobble base is a base, which forms a wobble base pair with a further base as described above. Therefore non-Watson-Crick base pairing, e.g. wobble base pairing, may occur in the stem of the histone stem-loop structure 10 according to the present invention. In the above context a partially reverse complementary sequence comprises maximally 2, preferably only one mismatch in the stem-structure of the stem-loop sequence formed by base pairing of stem and stem2. In other words, stem and stem2 are preferably capable of 15 (full) base pairing with each other throughout the entire sequence of stem and stem2 (100% of possible correct Watson-Crick or non-Watson-Crick base pairings), thereby forming a reverse complementary sequence, wherein each base has its correct Watson Crick or non-Watson-Crick base pendant as a complementary binding partner. Alternatively, stem and stem2 are preferably capable of partial base pairing with each 20 other throughout the entire sequence of stem and stem2, wherein at least about 70%, 75%, 80%, 85%, 90%, or 95% of the 100% possible correct Watson-Crick or non-Watson Crick base pairings are occupied with the correct Watson-Crick or non-Watson-Crick base pairings and at most about 30%, 25%, 20%, 15%, 10%, or 5% of the remaining bases are unpaired. 25 According to a preferred embodiment of the first inventive aspect, the at least one histone stem-loop sequence (with stem bordering elements) of the inventive nucleic acid sequence as defined herein comprises a length of about 15 to about 45 nucleotides, preferably a length of about 15 to about 40 nucleotides, preferably a length of about 15 to about 35 30 nucleotides, preferably a length of about 15 to about 30 nucleotides and even more preferably a length of about 20 to about 30 and most preferably a length of about 24 to about 28 nucleotides. WO 2013/120629 PCT/EP2013/000461 20 According to a further preferred embodiment of the first inventive aspect, the at least one histone stem-loop sequence (without stem bordering elements) of the inventive nucleic acid sequence as defined herein comprises a length of about 10 to about 30 nucleotides, preferably a length of about 10 to about 20 nucleotides, preferably a length of about 12 to 5 about 20 nucleotides, preferably a length of about 14 to about 20 nucleotides and even more preferably a length of about 16 to about 17 and most preferably a length of about 16 nucleotides. According to a further preferred embodiment of the first inventive aspect, the inventive nucleic 10 acid sequence according to the first aspect of the present invention may comprise or code for at least one histone stem-loop sequence according to at least one of the following specific formulae (1a) or (Ila): formula (la) (stem-loop sequence without stem bordering elements): 15 [No_1GN3_5] [Nl-3(U/TF)No-2] [N3.sCNo_1] stem loop stem2 20 formula (Ila) (stem-loop sequence with stem bordering elements): N 2 - 5 [NO1IGN 3 . 5 ] [N 1 3 (U/T)No- 2 ] [N 3 . 5 CNo_ 1 ] N 2 - 5 stem1 stem 1 loop stem2 stem2 25 bordering element bordering element wherein: N, C, G, T and U are as defined above. 30 According to a further more particularly preferred embodiment of the first aspect, the inventive nucleic acid sequence may comprise or code for at least one histone stem-loop sequence according to at least one of the following specific formulae (lb) or (11b): WO 2013/120629 PCT/EP2013/000461 21 formula (lb) (stem-loop sequence without stem bordering elements): [NGN 4 ] [N 2 (U/T)N,] [N 4 CN,] 5 stem loop stem2 formula (11b) (stem-loop sequence with stem bordering elements): 10 N 4 _ 5 [NGN 4 ] [N 2 (Uf[)N,] [N 4 CN,] N 4 _ 5 stem stem loop stem2 stem2 bordering element bordering element 15 wherein: N, C, G, T and U are as defined above. According to an even more preferred embodiment of the first inventive aspect, the inventive 20 nucleic acid sequence according to the first aspect of the present invention may comprise or code for at least one histone stem-loop sequence according to at least one of the following specific formulae (Ic) to (1h) or (I1c) to (Ilh), shown alternatively in its stem-loop structure and as a linear sequence representing histone stem-loop sequences as generated according to Example 1: 25 formula (Ic): (metazoan and protozoan histone stem-loop consensus sequence without stem bordering elements): N U 30 N N N-N N-N N-N N-N 35 G-C N-N (stem-loop structure) NGNNNNNNUNNNNNCN (linear sequence) (SEQ ID NO: 1) WO 2013/120629 PCT/EP2013/000461 22 formula (ic): (metazoan and protozoan histone stem-loop consensus sequence with stem bordering elements): N U 5 N N N-N N-N N-N N-N 10 G-C N*N*NNNN-NNNN*N*N* (stem-loop structure) N*N*NNNNGNNNNNNUNNNNNCNNNN*N*N* (linear sequence) (SEQ ID NO: 2) 15 formula (Id): (without stem bordering elements) N U N N N-N 20 N-N N-N N-N C-G N-N (stem-loop structure) 25 NCNNNNNNUNNNNNGN (linear sequence) (SEQ ID NO: 3) formula (lid): (with stem bordering elements) 30 NU N N N-N N-N N-N 35 N-N C-G N*N*NNNN-NNNN*N*N* (stem-loop structure) N*N*NNNNCNNNNNNUNNNNNGNNNN*N*N* 40 (linear sequence) (SEQ ID NO: 4) WO 2013/120629 PCT/EP2013/000461 23 formula (le): (protozoan histone stem-loop consensus sequence without stem bordering elements) N U 5 N N N-N N-N N-N N-N 10 G-C D-H (stem-loop structure) DGNNNNNNUNNNNNCH (linear sequence) (SEQ ID NO: 5) 15 formula (lie): (protozoan histone stem-loop consensus sequence with stem bordering elements) NU N N 20 N-N N-N N-N N-N G-C 25 N*N*NNND-HNNN*N*N* (stem-loop structure) N*N*NNNDGNNNNNNUNNNNNCHNNN*N*N* (linear sequence) (SEQ ID NO: 6) 30 formula (If): (metazoan histone stem-loop consensus sequence without stem bordering elements) NU N N 35 Y-V Y-N B-D N-N G-C 40 N-N (stem-loop structure) NGNBYYNNUNVNDNCN (linear sequence) (SEQ ID NO: 7) WO 2013/120629 PCT/EP2013/000461 24 formula (1f): (metazoan histone stem-loop consensus sequence with stem bordering elements) N U 5 N N Y-V Y-N B-D N-N 10 G-C N*N*NNNN-NNNN*N*N* (stem-loop structure) N*N*NNNNGNBYYNNUNVNDNCNNNN*N*N* (linear sequence) (SEQ ID NO: 8) 15 formula (Ig): (vertebrate histone stem-loop consensus sequence without stem bordering elements) N U D H 20 Y-A Y-B Y-R H-D G-C 25 N-N (stem-loop structure) NGHYYYDNUHABRDCN (linear sequence) (SEQ ID NO: 9) 30 formula (Ig): (vertebrate histone stem-loop consensus sequence with stem bordering elements) N U D H Y-A 35 Y-B Y-R H-D G-C N*N*HNNN-NNNN*N*H* (stem-loop structure) 40 N*N*HNNNGHYYYDNUHABRDCNNNN*N*H* (linear sequence) (SEQ ID NO: 10) WO 2013/120629 PCT/EP2013/000461 25 formula (1h): (human histone stem-loop consensus sequence (Homo sapiens) without stem bordering elements) Y U 5 D H U-A C-S Y-R H-R 10 G-C D-C (stem-loop structure) DGHYCUDYUHASRRCC (linear sequence) (SEQ ID NO: 11) 15 formula (llh): (human histone stem-loop consensus sequence (Homo sapiens) with stem bordering elements) Y U 20 D H U-A C-S Y-R H-R 25 G-C N*H*AAHD-CVHB*N*H* (stem loop structure) N*H*AAHDGHYCUDYUHASRRCCVHB*N*H* (linear sequence) (SEQ ID NO: 12) 30 wherein in each of above formulae (Ic) to (1h) or (llc) to (1Ih): N, C, G, A, T and U are as defined above; 35 each U may be replaced by T; each (highly) conserved G or C in the stem elements 1 and 2 may be replaced by its complementary nucleotide base C or G, provided that its complementary nucleotide in the corresponding stem is replaced by its complementary nucleotide in parallel; and/or 40 G, A, T, U, C, R, Y, M, K, S, W, H, B, V, D, and N are nucleotide bases as defined in the following Table: WO 2013/120629 PCT/EP2013/000461 26 abbreviation Nucleotide bases remark G G Guanine A A Adenine T T Thymine U U Uracile C C Cytosine R G or A Purine Y T/U or C Pyrimidine M A or C Amino K G or T/U Keto S G or C Strong (3H bonds) W A or T/U Weak (2H bonds) H A or C or T/U Not G B G or T/U or C Not A V G or C or A Not T/U D G or A or T/U Not C N G or C or T/U or A Any base * Present or not Base may be present or not In this context it is particularly preferred that the histone stem-loop sequence according to at least one of the formulae (1) or (1a) to (1h) or (II) or (Ila) to (llh) of the present invention is 5 selected from a naturally occurring histone stem loop sequence, more particularly preferred from protozoan or metazoan histone stem-loop sequences, and even more particularly preferred from vertebrate and mostly preferred from mammalian histone stem-loop sequences especially from human histone stem-loop sequences. 10 According to a particularly preferred embodiment of the first aspect, the histone stem-loop sequence according to at least one of the specific formulae (1) or (1a) to (1h) or (11) or (Ila) to (llh) of the present invention is a histone stem-loop sequence comprising at each nucleotide position the most frequently occurring nucleotide, or either the most frequently or the second most frequently occurring nucleotide of naturally occurring histone stem-loop sequences in 15 metazoa and protozoa (Fig. 1), protozoa (Fig. 2), metazoa (Fig. 3), vertebrates (Fig. 4) and humans (Fig. 5) as shown in figure 1-5. In this context it is particularly preferred that at least 80%, preferably at least 85%, or most preferably at least 90% of all nucleotides correspond to the most frequently occurring nucleotide of naturally occurring histone stem-loop sequences. 20 In a further particular embodiment of the first aspect, the histone stem-loop sequence according to at least one of the specific formulae (1) or (1a) to (1h) of the present invention is WO 2013/120629 PCT/EP2013/000461 27 selected from following histone stem-loop sequences (without stem-bordering elements) representing histone stem-loop sequences as generated according to Example 1: VGYYYYHHTHRVVRCB (SEQ ID NO: 13 according to formula (Ic)) 5 SGYYYTTYTMARRRCS (SEQ ID NO: 14 according to formula (Ic)) SGYYCTTTTMAGRRCS (SEQ ID NO: 15 according to formula (Ic)) DGNNNBNNTHVNNNCH (SEQ ID NO: 16 according to formula (le)) RGNNNYHBTHRDNNCY (SEQ ID NO: 17 according to formula (le)) 10 RGNDBYHYTHRDHNCY (SEQ ID NO: 18 according to formula (le)) VGYYYTYHTHRVRRCB (SEQ ID NO: 19 according to formula (If)) SGYYCTTYTMAGRRCS (SEQ ID NO: 20 according to formula (If)) SGYYCTTTTMAGRRCS (SEQ ID NO: 21 according to formula (If)) 15 GGYYCTTYTHAGRRCC (SEQ ID NO: 22 according to formula (Ig)) GGCYCTTYTMAGRGCC (SEQ ID NO: 23 according to formula (Ig)) GGCTCTTTTMAGRGCC (SEQ ID NO: 24 according to formula (Ig)) 20 DGHYCTDYTHASRRCC (SEQ ID NO: 25 according to formula (1h)) GGCYCTTTTHAGRGCC (SEQ ID NO: 26 according to formula (1h)) GGCYCTTTTMAGRGCC (SEQ ID NO: 27 according to formula (Ih)) Furthermore in this context following histone stem-loop sequences (with stem bordering 25 elements) as generated according to Example 1 according to one of specific formulae (11) or (Ila) to (Ilh) are particularly preferred: H*H*HHVVGYYYYHHTHRVVRCBVHH*N*N* (SEQ ID NO: 28 according to formula (lc)) M*H*MHMSGYYYTTYTMARRRCSMCH*H*H* (SEQ ID NO: 29 according to formula (lic)) 30 M*M*MMMSGYYC11TTMAGRRCSACH*M*H* (SEQ ID NO: 30 according to formula (llc)) N*N*NNNDGNNNBNNTHVNNNCHNHN*N*N* (SEQ ID NO: 31 according to formula (lie)) N*N*HHNRGNNNYHBTHRDNNCYDHH*N*N* (SEQ ID NO: 32 according to formula (lie)) WO 2013/120629 PCT/EP2013/000461 28 N*H*HHVRGNDBYHYTHRDHNCYRHH*H*H* (SEQ ID NO: 33 according to formula (lie)) H*H*MHMVGYYYTYHTHRVRRCBVMH*H*N* (SEQ ID NO: 34 according to formula (110) M*M*MMMSGYYCTTYTMAGRRCSMCH*H*H* (SEQ ID NO: 35 according to formula (110) 5 M*M*MMMSGYYCTTTTMAGRRCSACH*M*H* (SEQ ID NO: 36 according to formula (110) H*H*MAMGGYYCTTYTHAGRRCCVHN*N*M* (SEQ ID NO: 37 according to formula (lIg)) H*H*AAMGGCYCTTYTMAGRGCCVCH*H*M* (SEQ ID NO: 38 according to formula (lIg)) M*M*AAMGGCTCTTTTMAGRGCCMCY*M*M* (SEQ ID NO: 39 according to formula (lIg)) 10 N*H*AAHDGHYCTDYTHASRRCCVHB*N*H* (SEQ ID NO: 40 according to formula (l1h)) H*H*AAMGGCYCTTTTHAGRGCCVMY*N*M* (SEQ ID NO: 41 according to formula (Ilh)) H*M*AAAGGCYCTTTTMAGRGCCRMY*H*M* (SEQ ID NO: 42 according to formula (llh)) 15 According to a further preferred embodiment of the first inventive aspect, the inventive nucleic acid sequence comprises or codes for at least one histone stem-loop sequence showing at least about 80%, preferably at least about 85%, more preferably at least about 90%, or even more preferably at least about 95%, sequence identity with the not to 100% conserved nucleotides in the histone stem-loop sequences according to at least one of specific formulae (1) or (Ia) to 20 (Ih) or (11) or (Ila) to (1lh) or with a naturally occurring histone stem-loop sequence. In a preferred embodiment, the histone stem loop sequence does not contain the loop sequence 5'-UUUC-3'. More specifically, the histone stem loop does not contain the stem sequence 5'-GGCUCU-3' and/or the stem2 sequence 5'-AGAGCC-3', respectively. In another 25 preferred embodiment, the stem loop sequence does not contain the loop sequence 5' CCUGCCC-3' or the loop sequence 5'-UGAAU-3'. More specifically, the stem loop does not contain the stem sequence 5'-CCUGAGC-3' or does not contain the stem sequence 5' ACCUUUCUCCA-3' and/or the stem2 sequence 5'-GCUCAGG-3' or 5'-UGGAGAAAGGU-3', respectively. Also, as far as the invention is not limited to histone stem loop sequences 30 specifically, stem loop sequences are preferably not derived from a mammalian insulin receptor 3'-untranslated region. Also, preferably, the inventive nucleic acid may not contain histone stem loop processing signals, in particular not those derived from mouse histone gene H2A614 gene (H2kA614). WO 2013/120629 PCT/EP2013/000461 29 The inventive nucleic acid sequence according to the first aspect of the present invention may optionally comprise or code for a poly(A) sequence. When present, such a poly(A) sequence comprises a sequence of about 25 to about 400 adenosine nucleotides, preferably a sequence of about 30 or, more preferably, of about 50 to about 400 adenosine 5 nucleotides, more preferably a sequence of about 50 to about 300 adenosine nucleotides, even more preferably a sequence of about 50 to about 250 adenosine nucleotides, most preferably a sequence of about 60 to about 250 adenosine nucleotides. In this context the term "about" refers to a deviation of ± 10% of the value(s) it is attached to. Accordingly, the poly(A) sequence contains at least 25 or more than 25 , more preferably, at least 30, more 10 preferably at least 50 adenosine nucleotides. Therefore, such a poly (A) sequence does typically not contain less than 20 adenosine nucleotides. More particularly, it does not contain 10 and/or less than 10 adenosine nucleotides. Preferably, the nucleic acid according of the present invention does not contain one or two 15 or at least one or all but one or all of the components of the group consisting of: a sequence encoding a ribozyme (preferably a self-splicing ribozyme), a viral nucleic acid sequence, a histone stem-loop processing signal, in particular a histone-stem loop processing sequence derived from mouse histone H2A614 gene, a Neo gene, an inactivated promoter sequence and an inactivated enhancer sequence. Even more preferably, the nucleic acid according to 20 the invention does not contain a ribozyme, preferably a self-splicing ribozyme, and one of the group consisting of: a Neo gene, an inactivated promoter sequence, an inactivated enhancer sequence, a histone stem-loop processing signal, in particular a histone-stem loop processing sequence derived from mouse histone H2A614 gene. Accordingly, the nucleic acid may in a preferred mode neither contain a ribozyme, preferably a self-splicing 25 ribozyme, nor a Neo gene or, alternatively, neither a ribozyme, preferably a self-splicing ribozyme, nor any resistance gene (e.g. usually applied for selection). In another preferred mode, the nucleic acid of the invention may neither contain a ribozyme, preferably a self splicing ribozyme nor a histone stem-loop processing signal, in particular a histone-stem loop processing sequence derived from mouse histone H2A614 gene 30 Alternatively, according to the first aspect of the present invention, the inventive nucleic sequence optionally comprises a polyadenylation signal which is defined herein as a signal which conveys polyadenylation to a (transcribed) mRNA by specific protein factors (e.g. WO 2013/120629 PCT/EP2013/000461 30 cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation factor (CstF), cleavage factors I and II (CF I and CF 11), poly(A) polymerase (PAP)). In this context a consensus polyadenylation signal is preferred comprising the NN(U/T)ANA consensus sequence. In a particular preferred aspect the polyadenylation signal comprises one of the 5 following sequences: AA(U/T)AAA or A(U/T)(U/T)AAA (wherein uridine is usually present in RNA and thymidine is usually present in DNA). In some embodiments, the polyadenylation signal used in the inventive nucleic acid does not correspond to the U3 snRNA, U5, the polyadenylation processing signal from human gene G-CSF, or the SV40 polyadenylation signal sequences. In particular, the above polyadenylation signals are not combined with 10 any antibiotics resistance gene (or any other reporter, marker or selection gene), in particular not with the resistance neo gene (neomycin phosphotransferase) (as the gene of the coding region according to element (a) of the inventive nucleic acid. And, any of the above polyadenylation signals (which typically do not occur in the inventive nucleic acid) are preferably not combined with the histone stem loop or the histone stem loop processing 15 signal from mouse histone gene H2A614 in an inventive nucleic acid. The inventive nucleic acid sequence according to the first aspect of the present invention furthermore encodes a protein or a peptide, which comprises a therapeutic protein or a fragment, variant or derivative thereof. 20 Therapeutic proteins as defined herein are peptides or proteins which are beneficial for the treatment of any inherited or acquired disease or which improves the condition of an individual. Particularly, therapeutic proteins plays a big role in the creation of therapeutic agents that could modify and repair genetic errors, destroy cancer cells or pathogen infected 25 cells, treat immune system disorders, treat metabolic or endocrine disorders, among other functions. For instance, Erythropoietin (EPO), a protein hormone can be utilized in treating patients with erythrocyte deficiency, which is a common cause of kidney complications. Furthermore adjuvant proteins, therapeutic antibodies are encompassed by therapeutic proteins and also hormone replacement therapy which is e.g. used in the therapy of women 30 in the menopause. In newer approaches somatic cells of a patient are used to reprogram them into pluripotent stem cells which replace the disputed stem cell therapy. Also these proteins used for reprogramming of somatic cells or used for differentiating of stem cells are WO 2013/120629 PCT/EP2013/000461 31 defined herein as therapeutic proteins. Furthermore therapeutic proteins may be used for other purposes e.g. wound healing, tissue regeneration, angiogenesis, etc. Therefore therapeutic proteins can be used for various purposes including treatment of 5 various diseases like e.g. infectious diseases, neoplasms (e.g. cancer or tumour diseases), diseases of the blood and blood-forming organs, endocrine, nutritional and metabolic diseases, diseases of the nervous system, diseases of the circulatory system, diseases of the respiratory system, diseases of the digestive system, diseases of the skin and subcutaneous tissue, diseases of the musculoskeletal system and connective tissue, and diseases of the 10 genitourinary system, independently if they are inherited or acquired. In this context, particularly preferred therapeutic proteins which can be used inter alia in the treatment of metabolic or endocrine disorders are selected from: Acid sphingomyelinase (Niemann-Pick disease), Adipotide (obesity), Agalsidase-beta (human galactosidase A) 15 (Fabry disease; prevents accumulation of lipids that could lead to renal and cardiovascular complications), Alglucosidase (Pompe disease (glycogen storage disease type 11)), alpha galactosidase A (alpha-GAL A, Agalsidase alpha) (Fabry disease), alpha-glucosidase (Glycogen storage disease (GSD), Morbus Pompe), alpha-L-iduronidase (mucopolysaccharidoses (MPS), Hurler syndrome, Scheie syndrome), alpha-N 20 acetylglucosaminidase (Sanfilippo syndrome), Amphiregulin (cancer, metabolic disorder), Angiopoietin ((Ang1, Ang2, Ang3, Ang4, ANGPTL2, ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, ANGPTL7) (angiogenesis, stabilize vessels), Betacellulin (metabolic disorder), Beta-glucuronidase (Sly syndrome), Bone morphogenetic protein BMPs (BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP1 0, BMP1 5) (regenerative effect, 25 bone-related conditions, chronic kidney disease (CKD)), CLN6 protein (CLN6 disease Atypical Late Infantile, Late Onset variant, Early Juvenile, Neuronal Ceroid Lipofuscinoses (NCL)), Epidermal growth factor (EGF) (wound healing, regulation of cell growth, proliferation, and differentiation), Epigen (metabolic disorder), Epiregulin (metabolic disorder), Fibroblast Growth Factor (FGF, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF 30 7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, FGF-16, FGF-17, FGF-17, FGF-18, FGF-19, FGF-20, FGF-21, FGF-22, FGF-23) (wound healing, angiogenesis, endocrine disorders, tissue regeneration), Galsulphase (Mucopolysaccharidosis VI), Ghrelin (irritable bowel syndrome (IBS), obesity, Prader-Willi syndrome, type II diabetes mellitus), WO 2013/120629 PCT/EP2013/000461 32 Glucocerebrosidase (Gaucher's disease), GM-CSF (regenerative effect, production of white blood cells, cancer), Heparin-binding EGF-like growth factor (HB-EGF) (wound healing, cardiac hypertrophy and heart development and function), Hepatocyte growth factor HGF (regenerative effect, wound healing), Hepcidin (iron metabolism disorders, Beta 5 thalassemia), Human albumin (Decreased production of albumin (hypoproteinaemia), increased loss of albumin (nephrotic syndrome), hypovolaemia, hyperbilirubinaemia), Idursulphase (iduronate-2-sulphatase) (Mucopolysaccharidosis Il (Hunter syndrome)), Integrins aVp3, aVP5 and a5p1 (Bind matrix macromolecules and proteinases, angiogenesis), luduronate sulfatase (Hunter syndrome), Laronidase (Hurler and Hurler 10 Scheie forms of mucopolysaccharidosis I), N-acetylgalactosamine-4-sulfatase (rhASB; galsulfase, Arylsulfatase A (ARSA), Arylsulfatase B (ARSB)) (arylsulfatase B deficiency, Maroteaux-Lamy syndrome, mucopolysaccharidosis VI), N-acetylglucosamine-6-sulfatase (Sanfilippo syndrome), Nerve growth factor (NGF, Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin 4/5 (NT-4/5) (regenerative effect, 15 cardiovascular diseases, coronary atherosclerosis, obesity, type 2 diabetes, metabolic syndrome, acute coronary syndromes, dementia, depression, schizophrenia, autism, Rett syndrome, anorexia nervosa, bulimia nervosa, wound healing, skin ulcers, corneal ulcers, Alzheimer's disease), Neuregulin (NRG1, NRG2, NRG3, NRG4) (metabolic disorder, schizophrenia), Neuropilin (NRP-1, NRP-2) (angiogenesis, axon guidance, cell survival, 20 migration), Obestatin (irritable bowel syndrome (IBS), obesity, Prader-Willi syndrome, type 11 diabetes mellitus), Platelet Derived Growth factor (PDGF (PDFF-A, PDGF-B, PDGF-C, PDGF-D) (regenerative effect, wound healing, disorder in angiogenesis, Arteriosclerosis, Fibrosis, cancer), TGF beta receptors (endoglin, TGF-beta 1 receptor, TGF-beta 2 receptor, TGF-beta 3 receptor) (renal fibrosis, kidney disease, diabetes, ultimately end-stage renal 25 disease (ESRD), angiogenesis), Thrombopoietin (THPO) (Megakaryocyte growth and development factor (MGDF)) (platelets disorders, platelets for donation, recovery of platelet counts after myelosuppressive chemotherapy), Transforming Growth factor (TGF (TGF-a, TGF-beta (TGFbetal, TGFbeta2, and TGFbeta3))) (regenerative effect, wound healing, immunity, cancer, heart disease, diabetes, Marfan syndrome, Loeys-Dietz syndrome), VEGF 30 (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F und PIGF) (regenerative effect, angiogenesis, wound healing, cancer, permeability), Nesiritide (Acute decompensated congestive heart failure), Trypsin (Decubitus ulcer, varicose ulcer, debridement of eschar, dehiscent wound, sunburn, meconium ileus), adrenocorticotrophic hormone (ACTH) WO 2013/120629 PCT/EP2013/000461 33 ("Addison's disease, Small cell carcinoma, Adrenoleukodystrophy, Congenital adrenal hyperplasia, Cushing's syndrome, Nelson's syndrome, Infantile spasms), Atrial-natriuretic peptide (ANP) (endocrine disorders), Cholecystokinin (diverse), Gastrin (hypogastrinemia), Leptin (Diabetes, hypertriglyceridemia, obesity), Oxytocin (stimulate breastfeeding, non 5 progression of parturition), Somatostatin (symptomatic treatment of carcinoid syndrome, acute variceal bleeding, and acromegaly, polycystic diseases of the liver and kidney, acromegaly and symptoms caused by neuroendocrine tumors), Vasopressin (antidiuretic hormone) (diabetes insipidus), Calcitonin (Postmenopausal osteoporosis, Hypercalcaemia, Paget's disease, Bone metastases, Phantom limb pain, Spinal Stenosis), Exenatide (Type 2 10 diabetes resistant to treatment with metformin and a sulphonylurea), Growth hormone (GH), somatotropin (Growth failure due to GH deficiency or chronic renal insufficiency, Prader Willi syndrome, Turner syndrome, AIDS wasting or cachexia with antiviral therapy), Insulin (Diabetes mellitus, diabetic ketoacidosis, hyperkalaemia), Insulin-like growth factor 1 IGF-1 (Growth failure in children with GH gene deletion or severe primary IGF1 deficiency, 15 neurodegenerative disease, cardiovascular diseases, heart failure), Mecasermin rinfabate, IGF-1 analog (Growth failure in children with GH gene deletion or severe primary IGF1 deficiency, neurodegenerative disease, cardiovascular diseases, heart failure), Mecasermin, IGF-1 analog (Growth failure in children with GH gene deletion or severe primary IGF1 deficiency, neurodegenerative disease, cardiovascular diseases, heart failure), Pegvisomant 20 (Acromegaly), Pramlintide (Diabetes mellitus, in combination with insulin), Teriparatide (human parathyroid hormone residues 1-34) (Severe osteoporosis), Becaplermin (Debridement adjunct for diabetic ulcers), Dibotermin-alpha (Bone morphogenetic protein 2) (Spinal fusion surgery, bone injury repair), Histrelin acetate (gonadotropin releasing hormone; GnRH) (Precocious puberty), Octreotide (Acromegaly, symptomatic relief of VIP 25 secreting adenoma and metastatic carcinoid tumours), and Palifermin (keratinocyte growth factor; KGF) (Severe oral mucositis in patients undergoing chemotherapy, wound healing). (in brackets is the particular disease for which the therapeutic protein is used in the treatment). These and other proteins are understood to be therapeutic, as they are meant to treat the subject by replacing its defective endogenous production of a functional protein in 30 sufficient amounts. Accordingly, such therapeutic proteins are typically mammalian, in particular human proteins. WO 2013/120629 PCT/EP2013/000461 34 For the treatment of blood disorders, diseases of the circulatory system, diseases of the respiratory system, cancer or tumour diseases, infectious diseases or immunedeficiencies following therapeutic proteins may be used: Alteplase (tissue plasminogen activator; tPA) (Pulmonary embolism, myocardial infarction, acute ischaemic stroke, occlusion of central 5 venous access devices), Anistreplase (Thrombolysis), Antithrombin Ill (AT-Ill) (Hereditary AT-Ill deficiency, Thromboembolism), Bivalirudin (Reduce blood-clotting risk in coronary angioplasty and heparin-induced thrombocytopaenia), Darbepoetin-alpha (Treatment of anaemia in patients with chronic renal insufficiency and chronic renal failure (+/- dialysis)), Drotrecogin-alpha (activated protein C) (Severe sepsis with a high risk of death), 10 Erythropoietin, Epoetin-alpha, erythropoetin, erthropoyetin (Anaemia of chronic disease, myleodysplasia, anaemia due to renal failure or chemotherapy, preoperative preparation), Factor IX (Haemophilia B), Factor VIla (Haemorrhage in patients with haemophilia A or B and inhibitors to factor Vill or factor IX), Factor VIll (Haemophilia A), Lepirudin (Heparin induced thrombocytopaenia), Protein C concentrate (Venous thrombosis, Purpura 15 fulminans), Reteplase (deletion mutein of tPA) (Management of acute myocardial infarction, improvement of ventricular function), Streptokinase (Acute evolving transmural myocardial infarction, pulmonary embolism, deep vein thrombosis, arterial thrombosis or embolism, occlusion of arteriovenous cannula), Tenecteplase (Acute myocardial infarction), Urokinase (Pulmonary embolism), Angiostatin (Cancer), Anti-CD22 immunotoxin (Relapsed CD33+ 20 acute myeloid leukaemia), Denileukin diftitox (Cutaneous T-cell lymphoma (CTCL)), Immunocyanin (bladder and prostate cancer), MPS (Metal lopansti mul in) (Cancer), Aflibercept (Non-small cell lung cancer (NSCLC), metastatic colorectal cancer (mCRC), hormone-refractory metastatic prostate cancer, wet macular degeneration), Endostatin (Cancer, inflammatory diseases like rheumatoid arthritis as well as Crohn's disease, diabetic 25 retinopathy, psoriasis, and endometriosis), Collagenase (Debridement of chronic dermal ulcers and severely burned areas, Dupuytren's contracture, Peyronie's disease), Human deoxy-ribonuclease 1, dornase (Cystic fibrosis; decreases respiratory tract infections in selected patients with FVC greater than 40% of predicted), Hyaluronidase (Used as an adjuvant to increase the absorption and dispersion of injected drugs, particularly 30 anaesthetics in ophthalmic surgery and certain imaging agents), Papain (Debridement of necrotic tissue or liquefication of slough in acute and chronic lesions, such as pressure ulcers, varicose and diabetic ulcers, burns, postoperative wounds, pilonidal cyst wounds, carbuncles, and other wounds), L-Asparaginase (Acute lymphocytic leukaemia, which WO 2013/120629 PCT/EP2013/000461 35 requires exogenous asparagine for proliferation), Peg-asparaginase (Acute lymphocytic leukaemia, which requires exogenous asparagine for proliferation), Rasburicase (Paediatric patients with leukaemia, lymphoma, and solid tumours who are undergoing anticancer therapy that may cause tumour lysis syndrome), Human chorionic gonadotropin (HCG) 5 (Assisted reproduction), Human follicle-stimulating hormone (FSH) (Assisted reproduction), Lutropin-alpha (Infertility with luteinizing hormone deficiency), Prolactin (Hypoprolactinemia, serum prolactin deficiency, ovarian dysfunction in women, anxiety, arteriogenic erectile dysfunction, premature ejaculation, oligozoospermia, asthenospermia, hypofunction of seminal vesicles, hypoandrogenism in men), alpha-1-Proteinase inhibitor 10 (Congenital antitrypsin deficiency), Lactase (Gas, bloating, cramps and diarrhoea due to inability to digest lactose), Pancreatic enzymes (lipase, amylase, protease) (Cystic fibrosis, chronic pancreatitis, pancreatic insufficiency, post-Billroth I gastric bypass surgery, pancreatic duct obstruction, steatorrhoea, poor digestion, gas, bloating), Adenosine deaminase (pegademase bovine, PEG-ADA) (Severe combined immunodeficiency disease 15 due to adenosine deaminase deficiency), Abatacept (Rheumatoid arthritis (especially when refractory to TNFa inhibition)), Alefacept (Plaque Psoriasis ), Anakinra (Rheumatoid arthritis), Etanercept (Rheumatoid arthritis, polyarticular-course juvenile rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, plaque psoriasis, ankylosing spondylitis), Interleukin-1 (IL-1) receptor antagonist, Anakinra (inflammation and cartilage degradation 20 associated with rheumatoid arthritis), Thymulin (neurodegenerative diseases, rheumatism, anorexia nervosa), TNF-alpha antagonist (autoimmune disorders such as rheumatoid arthritis, ankylosing spondylitis, Crohn's disease, psoriasis, hidradenitis suppurativa, refractory asthma), Enfuvirtide (HIV-1 infection), and Thymosin al (Hepatitis B and C). (in brackets is the particular disease for which the therapeutic protein is used in the 25 treatment) Furthermore adjuvant or immunostimulating proteins are also encompassed in the term therapeutic proteins. Adjuvant or immunostimulating proteins may be used in this context to induce, alter or improve an immune response in an individual to treat a particular disease or 30 to ameliorate the condition of the individual. In this context adjuvant proteins may be selected from mammalian, in particular human adjuvant proteins, which typically comprise any human protein or peptide, which is WO 2013/120629 PCT/EP2013/000461 36 capable of eliciting an innate immune response (in a mammal), e.g. as a reaction of the binding of an exogenous TLR ligand to a TLR. More preferably, human adjuvant proteins are selected from the group consisting of proteins which are components and ligands of the signalling networks of the pattern recognition receptors including TLR, NLR and RLH, 5 including TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR1 0, TLR1 1; NOD1, NOD2, NOD3, NOD4, NOD5, NALP1, NALP2, NALP3, NALP4, NALP5, NALP6, NALP6, NALP7, NALP7, NALP8, NALP9, NALP10, NALP11, NALP12, NALP13, NALP14,1 IPAF, NAIP, CIITA, RIG-1, MDA5 and LGP2, the signal transducers of TLR signaling including adaptor proteins including e.g. Trif and Cardif; components of the Small-GTPases signalling 10 (RhoA, Ras, Raci, Cdc42, Rab etc.), components of the PIP signalling (P13K, Src-Kinases, etc.), components of the MyD88-dependent signalling (MyD88, IRAK1, IRAK2, IRAK4, TIRAP, TRAF6 etc.), components of the MyD88-independent signalling (TICAMi, TICAM2, TRAF6, TBK1, IRF3, TAKi, IRAK1 etc.); the activated kinases including e.g. Akt, MEKK1, MKK1, MKK3, -MKK4, MKK6, MKK7, ERKi, ERK2, GSK3, PKC kinases, PKD kinases, GSK3 15 kinases, JNK, p38MAPK, TAK1, IKK, and TAKI; the activated transcription factors including e.g. NF-KB, c-Fos, c-Jun, c-Myc, CREB, AP-1, Elk-1, ATF2, IRF-3, IRF-7. Mammalian, in particular human adjuvant proteins may furthermore be selected from the group consisting of heat shock proteins, such as HSP1 0, HSP60, HSP65, HSP70, HSP75 and HSP90, gp96, Fibrinogen, TypIll repeat extra domain A of fibronectin; or components of the 20 complement system including C1q, MBL, C1r, Cis, C2b, Bb, D, MASP-1, MASP-2, C4b, C3b, C5a, C3a, C4a, C5b, C6, C7, C8, C9, CR1, CR2, CR3, CR4, C1qR, C1INH, C4bp, MCP, DAF, H, I, P and CD59, or induced target genes including e.g. Beta-Defensin, cell surface proteins; or human adjuvant proteins including trif, fit-3 ligand, Gp96 or fibronectin, etc., or any species homolog of any of the above human adjuvant proteins. 25 Mammalian, in particular human adjuvant proteins may furthermore comprise cytokines which induce or enhance an innate immune response, including IL-1 alpha, IL1 beta, IL-2, IL-6, IL-7, IL-8, IL-9, IL-12, IL-13, IL-15, IL-16, IL-17, IL-18, IL-21, IL-23, TNFalpha, IFNalpha, IFNbeta, IFNgamma, GM-CSF, G-CSF, M-CSF; chemokines including IL-8, IP-10, MCP-1, MIP-1alpha, RANTES, Eotaxin, CCL21; cytokines which are released from 30 macrophages, including IL-1, IL-6, IL-8, IL-12 and TNF-alpha; as well as IL-1R1 and IL-1 alpha. WO 2013/120629 PCT/EP2013/000461 37 Therapeutic proteins for the treatment of blood disorders, diseases of the circulatory system, diseases of the respiratory system, cancer or tumour diseases, infectious diseases or immunedeficiencies or adjuvant proteins are typically proteins of mammalian origin, preferably of human origin, depending on which animal shall be treated. A human is e.g. 5 preferably treated by a therapeutic protein of human origin. Pathogenic adjuvant proteins, typically comprise any pathogenic adjuvant protein, which is capable of eliciting an innate immune response (in a mammal), more preferably selected from pathogenic adjuvant proteins derived from bacteria, protozoa, viruses, or fungi, etc., 10 e.g., bacterial (adjuvant) proteins, protozoan (adjuvant) proteins (e.g. profilin - like protein of Toxoplasma gondii), viral (adjuvant) proteins, or fungal (adjuvant) proteins, etc. Particularly, bacterial (adjuvant) proteins may be selected from the group consisting of bacterial heat shock proteins or chaperons, including Hsp60, Hsp70, Hsp90, Hsp100; 15 OmpA (Outer membrane protein) from gram-negative bacteria; bacterial porins, including OmpF; bacterial toxins, including pertussis toxin (PT) from Bordetella pertussis, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetellapertussis, PT-9K/129G mutant from pertussis toxin, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, tetanus toxin, cholera toxin (CT), cholera toxin B-subunit, CTK63 mutant from cholera toxin, 20 CTE1 12K mutant from CT, Escherichia co/i heat-labile enterotoxin (LT), B subunit from heat labile enterotoxin (LTB) Escherichia co/i heat-labile enterotoxin mutants with reduced toxicity, including LTK63, LTR72; phenol-soluble modulin; neutrophil-activating protein (HP-NAP) from He/icobacter py/ori Surfactant protein D; Outer surface protein A lipoprotein from Borrelia burgdorferi, Ag38 (38 kDa antigen) from Mycobacterium 25 tuberculosis; proteins from bacterial fimbriae; Enterotoxin CT of Vibrio cholerae, Pilin from pili from gram negative bacteria, and Surfactant protein A; etc., or any species homolog of any of the above bacterial (adjuvant) proteins. Bacterial (adjuvant) proteins may also comprise bacterial flagellins. In the context of the 30 present invention, bacterial flagellins may be selected from flagellins from organisms including, without being limited thereto, Agrobacterium, Aquifex, Azospiril/um, Bacillus, Bartonella, Bordetella, Borrelia, Burkholderia, Campy/obacter, Caulobacte, Clostridium, Escherichia, Helicobacter, Lachnospiraceae, Legionella, Listeria, Proteus, Pseudomonas, WO 2013/120629 PCT/EP2013/000461 38 Rhizobium, Rhodobacter, Roseburia, Salmonella, Serpulina, Serratia, ShIgella, Treponema, Vibri, Wolinella, Yersinia, more preferably from flagellins from the species including, without being limited thereto, Agrobacterium tumefaciens, Aquifex pyrophilus, Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Bartonella bacilliformis, Bordetella 5 bronchiseptica, Borrelia burgdorferi, Burkholderia cepacia, Campylobacter jejuni, Caulobacter crescentus, Clostridium botulinum strain Bennett clone 1, Escherichia col, Helicobacter pylori, Lachnospiraceae bacterium, Legionella pneumophila, Listeria monocytogenes, Proteus mirabilis, Pseudomonas aeroguinosa, Pseudomonas syringae, Rhizobium meliloti, Rhodobacter sphaeroides, Roseburia cecicola, Roseburis hominis, 10 Salmonella typhimurium, Salmonella bongori, Salmonella typhi, Salmonella enteritidis, Serpulina hyodysenteriae, Serratia marcescens, Shigella boydii, Treponema phagedenis, Vibrio alginolyticus, Vibrio cholerae, Vibrio parahaemolyticus, Wolinella succinogenes and Yersinia enterocolitica. 15 Protozoan (adjuvant) proteins are a further example of pathogenic adjuvant proteins. Protozoan (adjuvant) proteins may be selected in this context from any protozoan protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, Tc52 from Trypanosoma cruzi, PFTG from Trypanosoma gondii, Protozoan heat shock proteins, LelF from Leishmania spp., profiling-like protein from Toxoplasma 20 gondii, etc. Viral (adjuvant) proteins are another example of pathogenic adjuvant proteins. In this context, viral (adjuvant) proteins may be selected from any viral protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, 25 Respiratory Syncytial Virus fusion glycoprotein (F-protein), envelope protein from MMT virus, mouse leukemia virus protein, Hemagglutinin protein of wild-type measles virus, etc. Fungal (adjuvant) proteins are even a further example of pathogenic adjuvant proteins. In the context of the present invention, fungal (adjuvant) proteins may be selected from any 30 fungal protein showing adjuvant character, more preferably, from the group consisting of, fungal immunomodulatory protein (FIP; LZ-8), etc. WO 2013/120629 PCT/EP2013/000461 39 Finally, adjuvant proteins may furthermore be selected from the group consisting of, Keyhole limpet hemocyanin (KLH), OspA, etc. In a further embodiment therapeutic proteins may be used for hormone replacement 5 therapy, particularly for the therapy of women in the menopause. These therapeutic proteins are preferably selected from oestrogens, progesterone or progestins, and sometimes testosterone. Furthermore, therapeutic proteins may be used for reprogramming of somatic cells into 10 pluri- or omnipotent stem cells. For this purpose several factors are described, particularly Oct-3/4, Sox gene family (Sox1, Sox2, Sox3, and Sox1 5), Klf family (Kifl, Klf2, Klf4, and Klf5), Myc family (c-myc, L-myc, and N-myc), Nanog, and LIN28. As mentioned above, also therapeutic antibodies are defined herein as therapeutic proteins. 15 These therapeutic antibodies are preferably selected from antibodies which are used inter alia for the treatment of cancer or tumour diseases, e.g. 1311-tositumomab (Follicular lymphoma, B cell lymphomas, leukemias), 3F8 (Neuroblastoma), 8H9, Abagovomab (Ovarian cancer), Adecatumumab (Prostate and breast cancer), Afutuzumab (Lymphoma), Alacizumab pegol, Alemtuzumab (B-cell chronic 20 lymphocytic leukaemia, T-cell-Lymphoma), Amatuximab, AME-133v (Follicular lymphoma, cancer), AMG 102 (Advanced Renal Cell Carcinoma), Anatumomab mafenatox (Non-small cell lung carcinoma), Apolizumab (Solid Tumors, Leukemia, Non-Hodgkin-Lymphoma, Lymphoma), Bavituximab (Cancer, viral infections), Bectumomab (Non-Hodgkin's lymphoma), Belimumab (Non-Hodgkin lymphoma), Bevacizumab (Colon Cancer, Breast 25 Cancer, Brain and Central Nervous System Tumors, Lung Cancer, Hepatocellular Carcinoma, Kidney Cancer, Breast Cancer, Pancreatic Cancer, Bladder Cancer, Sarcoma, Melanoma, Esophageal Cancer; Stomach Cancer, Metastatic Renal Cell Carcinoma; Kidney Cancer, Glioblastoma, Liver Cancer, Proliferative Diabetic Retinopathy, Macular Degeneration), Bivatuzumab mertansine (Squamous cell carcinoma), Blinatumomab, 30 Brentuximab vedotin (Hematologic cancers), Cantuzumab (Colon Cancer, Gastric Cancer, Pancreatic Cancer, NSCLC), Cantuzumab mertansine (Colorectal cancer), Cantuzumab ravtansine (Cancers), Capromab pendetide (Prostate cancer), Carlumab, Catumaxomab (Ovarian Cancer, Fallopian Tube Neoplasms, Peritoneal Neoplasms), Cetuximab (Metastatic WO 2013/120629 PCT/EP2013/000461 40 colorectal cancer and head and neck cancer), Citatuzumab bogatox (Ovarian cancer and other solid tumors), Cixutumumab (Solid tumors), Clivatuzumab tetraxetan (Pancreatic cancer), CNTO 328 (B-Cell Non-Hodgkin's Lymphoma, Multiple Myeloma, Castleman's Disease, ovarian cancer), CNTO 95 (Melanoma), Conatumumab, Dacetuzumab 5 (Hematologic cancers), Dalotuzumab, Denosumab (Myeloma, Giant Cell Tumor of Bone, Breast Cancer, Prostate Cancer, Osteoporosis), Detumomab (Lymphoma), Drozitumab, Ecromeximab (Malignant melanoma), Edrecolomab (Colorectal carcinoma), Elotuzumab (Multiple myeloma), Elsilimomab, Enavatuzumab, Ensituximab, Epratuzumab (Autoimmune diseases, Systemic Lupus Erythematosus, Non-Hodgki n-Lymphoma, Leukemia), 10 Ertumaxomab (Breast cancer), Ertumaxomab (Breast Cancer), Etaracizumab (Melanoma, prostate cancer, ovarian cancer), Farletuzumab (Ovarian cancer), FBTA05 (Chronic lymphocytic leukaemia), Ficlatuzumab (Cancer), Figitumumab (Adrenocortical carcinoma, non-small cell lung carcinoma), Flanvotumab (Melanoma), Galiximab (B-cell lymphoma), Galiximab (Non-Hodgkin-Lymphoma), Ganitumab, GC1008 (Advanced Renal Cell 15 Carcinoma; Malignant Melanoma, Pulmonary Fibrosis), Gemtuzumab (Leukemia), Gemtuzumab ozogamicin (Acute myelogenous leukemia), Girentuximab (Clear cell renal cell carcinoma), Glembatumumab vedotin (Melanoma, breast cancer), GS6624 (idiopathic pulmonary fibrosis and solid tumors), HuC242-DM4 (Colon Cancer, Gastric Cancer, Pancreatic Cancer), HuHMFG1 (Breast Cancer), HuN901-DM1 (Myeloma), lbritumomab 20 (Relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma (NHL)), Icrucumab, ID09C3 (Non-Hodgkin-Lymphoma), Indatuximab ravtansine, Inotuzumab ozogamicin, Intetumumab (Solid tumors (Prostate cancer, melanoma)), Ipilimumab (Sarcoma, Melanoma, Lung cancer, Ovarian Cancer leucemia, Lymphoma, Brain and Central Nervous System Tumors, Testicular Cancer, Prostate Cancer, 25 Pancreatic Cancer, Breast Cancer), Iratumumab (Hodgkin's lymphoma), Labetuzumab (Colorectal cancer), Lexatumumab, Lintuzumab, Lorvotuzumab mertansine, Lucatumumab (Multiple myeloma, non-Hodgkin's lymphoma, Hodgkin's lymphoma), Lumiliximab (Chronic lymphocytic leukemia), Mapatumumab (Colon Cancer, Myeloma), Matuzumab (Lung Cancer, Cervical Cancer, Esophageal Cancer), MDX-060 (Hodgkin-Lymphoma, 30 Lymphoma), MEDI 522 (Solid Tumors, Leukemia, Lymphoma, Small Intestine Cancer, Melanoma), Mitumomab (Small cell lung carcinoma), Mogamulizumab, MORab-003 (Ovarian Cancer, Fallopian Tube Cancer, Peritoneal Cancer), MORab-009 (Pancreatic Cancer, Mesothelioma, Ovarian Cancer, Non-Small Cell Lung Cancer, Fallopian Tube WO 2013/120629 PCT/EP2013/000461 41 Cancer, Peritoneal Cavity Cancer), Moxetumomab pasudotox, MT103 (Non-Hodgkin Lymphoma), Nacolomab tafenatox (Colorectal cancer), Naptumomab estafenatox (Non small cell lung carcinoma, renal cell carcinoma), Narnatumab, Necitumumab (Non-small cell lung carcinoma), Nimotuzumab (Squamous cell carcinoma, head and neck cancer, 5 nasopharyngeal cancer, glioma), Nimotuzumab (Squamous cell carcinomas, Glioma, Solid Tumors, Lung Cancer), Olaratumab, Onartuzumab (Cancer), Oportuzumab monatox, Oregovomab (Ovarian cancer), Oregovomab (Ovarian Cancer, Fallopian Tube Cancer, Peritoneal Cavity Cancer), PAM4 (Pancreatic Cancer), Panitumumab (Colon Cancer, Lung Cancer, Breast Cancer; Bladder Cancer; Ovarian Cancer), Patritumab, Pemtumomab, 10 Pertuzumab (Breast Cancer, Ovarian Cancer, Lung Cancer, Prostate Cancer), Pritumumab (Brain cancer), Racotumomab, Radretumab, Ramucirumab (Solid tumors), Rilotumumab (Solid tumors), Rituximab (Urticaria, Rheumatoid Arthritis, Ulcerative Colitis, Chronic Focal Encephalitis, Non-Hodgkin-Lymphoma, Lymphoma, Chronic Lymphocytic Leukemia), Robatumumab, Samalizumab, SGN-30 (Hodgkin-Lymphoma, Lymphoma), SGN-40 (Non 15 Hodgkin-Lymphoma, Myeloma, Leukemia, Chronic Lymphocytic Leukemia), Sibrotuzumab, Siltuximab, Tabalumab (B-cell cancers), Tacatuzumab tetraxetan, Taplitumomab paptox, Tenatumomab, Teprotumumab (Hematologic tumors), TGN1412 (Chronic lymphocytic leukemia, rheumatoid arthritis), Ticilimumab (= tremelimumab), Tigatuzumab, TNX-650 (Hodgkin's lymphoma), Tositumomab (Follicular lymphoma, B cell lymphomas, Leukemias, 20 Myeloma), Trastuzumab (Breast Cancer, Endometrial Cancer, Solid Tumors), TRBSO7 (Melanoma), Tremelimumab, TRU-016 (Chronic lymphocytic leukemia), TRU-016 (Non Hodgkin lymphoma), Tucotuzumab celmoleukin, Ublituximab, Urelumab, Veltuzumab (Non-Hodgkin's lymphoma), Veltuzumab (IMMU-106) (Non-Hodgkin's lymphoma), Volociximab (Renal Cell Carcinoma, Pancreatic Cancer, Melanoma), Votumumab 25 (Colorectal tumors), WX-G250 (Renal Cell Carcinoma), Zalutumumab (Head and Neck Cancer, Squamous Cell Cancer), and Zanolimumab (T-Cell-Lymphoma); antibodies which are used inter alia for the treatment of immune disorders, e.g. Efalizumab (Psoriasis), Epratuzumab (Autoimmune diseases, Systemic Lupus Erythematosus, Non 30 Hodgkin-Lymphoma, Leukemia), Etrolizumab (inflammatory bowel disease), Fontolizumab (Crohn's disease ), lxekizumab (autoimmune diseases), Mepolizumab (Hypereosinophilie Syndrom, Asthma, Eosinophilic Gastroenteritis, Churg-Strauss Syndrome, Eosinophilic Esophagitis), Milatuzumab (multiple myeloma and other hematological malignancies), WO 2013/120629 PCT/EP2013/000461 42 Pooled immunoglobulins (Primary immunodeficiencies), Priliximab (Crohn's disease, multiple sclerosis), Rituximab (Urticaria, Rheumatoid Arthritis, Ulcerative Colitis, Chronic Focal Encephalitis, Non-Hodgkin-Lymphoma, Lymphoma, Chronic Lymphocytic Leukemia), Rontalizumab (systemic lupus erythematosus), Ruplizumab (rheumatic diseases), Sarilumab 5 (rheumatoid arthritis, ankylosing spondylitis), Vedolizumab (Crohn's disease, ulcerative colitis), Visilizumab (Crohn's disease, ulcerative colitis), Reslizumab (inflammations of the airways, skin and gastrointestinal tract), Adalimumab (Rheumatoid arthritis, Crohn's disease, Ankylosing spondylitis, Psoriatic arthritis), Aselizumab (severely injured patients), Atinumab (treatment of neurologic systems), Atlizumab (rheumatoid arthritis, systemic juvenile 10 idiopathic arthritis), Bertilimumab (severe allergic disorders), Besilesomab (inflammatory lesions and metastases), BMS-945429, ALD518 (cancer and rheumatoid arthritis), Briakinumab (psoriasis, rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis), Brodalumab (inflammatory diseases), Canakinumab (rheumatoid arthritis), Canakinumab (cryopyrin-associated periodic syndromes (CAPS), rheumatoid arthritis, 15 chronic obstructive pulmonary disease), Certolizumab pegol (Crohn's disease), Erlizumab (heart attack, stroke, traumatic shock), Fezakinumab (rheumatoid arthritis, psoriasis), Golimumab (rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis), Gomiliximab (allergic asthma), Infliximab (Rheumatoid arthritis, Crohn's disease, ankylosing spondylitis, psoriatic arthritis, plaque psoriasis, Morbus Bechterew, Colitis ulcerosa), Mavrilimumab 20 (rheumatoid arthritis), Natalizumab (Multiple sclerosis), Ocrelizumab (multiple sclerosis, rheumatoid arthritis, lupus erythematosus, hematological cancer), Odulimomab (prevention of organ transplant rejections, immunological diseases), Ofatumumab (Chronic lymphocytic leukemia, follicular non-Hodgkin's lymphoma, B cell lymphoma, rheumatoid arthritis, relapsing remitting multiple sclerosis, Lymphoma, B-Cell Chronic Lymphocytic Leukemia), 25 Ozoralizumab (inflammation), Pexelizumab (reduction of side effects of cardiac surgery), Rovelizumab (haemorrhagic shock ), SBI-087 (Rheumatoid arthritis), SBI-087 (Systemic lupus erythematosus), Secukinumab (uveitis, rheumatoid arthritis psoriasis), Sirukumab (rheumatoid arthritis), Talizumab (allergic reaction), Tocilizumab (rheumatoid arthritis, systemic juvenile idiopathic arthritis, Castleman's disease), Toralizumab (rheumatoid 30 arthritis, lupus nephritis ), TRU-015 (Rheumatoid arthritis), TRU-016 (Autoimmune disease and inflammation), Ustekinumab (multiple sclerosis, psoriasis, psoriatic arthritis), Ustekinumab (IL-12/IL-23 blocker) (Plaque-Psoriasis, psoriatic arthritis, multiple sclerosis, sarcoidosis, the latter versus ), Vepalimomab (inflammation), Zolimomab aritox (systemic WO 2013/120629 PCT/EP2013/000461 43 lupus erythematosus, graft-versus-host disease), Sifalimumab (SLE, dermatomyositis, polymyositis), Lumiliximab (Allergies), and Rho(D) Immune Globulin (Rhesus disease ); or are selected from antibodies used for the treatment of infectious diseases, e.g. Afelimomab (sepsis), CR6261 (infectious disease/influenza A), Edobacomab (sepsis caused by gram 5 negative bacteria), Efungumab (invasive Candida infection), Exbivirumab (hepatitis B), Felvizumab (respiratory syncytial virus infection), Foravirumab (rabies (prophylaxis)), lbalizumab (HIV infection), Libivirumab (hepatitis B), Motavizumab (respiratory syncytial virus (prevention)), Nebacumab (sepsis), Tuvirumab (chronic hepatitis B), Urtoxazumab (diarrhoea caused by E. coli), Bavituximab (diverse viral infections), Pagibaximab (sepsis 10 (e.g. Staphylococcus)), Palivizumab (prevention of respiratory syncytial virus infection in high-risk paediatric patients), Panobacumab (Pseudomonas aeruginosa infection), PRO 140 (HIV infection), Rafivirumab (rabies (prophylaxis)), Raxibacumab (anthrax (prophylaxis and treatment)), Regavirumab (cytomegalovirus infection), Sevirumab (cytomegalovirus infection), Suvizumab (viral infections), and Tefibazumab (Staphylococcus aureus infection); 15 antibodies which are used inter alia for the treatment of blood disorders, e.g. Abciximab (percutaneous coronary intervention), Atorolimumab (hemolytic disease of the newborn), Eculizumab (Paroxysmal nocturnal haemoglobinuria), Mepolizumab (Hypereosinophilie Syndrom, Asthma, Eosinophilic Gastroenteritis, Churg-Strauss Syndrome, Eosinophilic 20 Esophagitis), and Milatuzumab (multiple myeloma and other hematological malignancies); antibodies which are used inter alia.for immunoregulation, e.g. Antithymocyte globulin (Acute kidney transplant rejection, aplastic anaemia), Basiliximab (Prophylaxis against allograft rejection in renal transplant patients receiving an immunosuppressive regimen 25 including cyclosporine and corticosteroids), Cedelizumab (prevention of organ transplant rejections, treatment of autoimmune diseases), Daclizumab (Prophylaxis against acute allograft rejection in patients receiving renal transplants, Multiple Sclerosis), Gavilimomab (graft versus host disease), Inolimomab (graft versus host disease), Muromonab-CD3 (prevention of organ transplant rejections), Muromonab-CD3 (Acute renal allograft rejection 30 or steroid-resistant cardiac or hepatic allograft rejection), Odulimomab (prevention of organ transplant rejections, immunological diseases), and Siplizumab (psoriasis, graft-versus-host disease (prevention)); WO 2013/120629 PCT/EP2013/000461 44 antibodies used for the treatment of diabetes, e.g. Gevokizumab (diabetes), Otelixizumab (diabetes mellitus type 1), and Teplizumab (diabetes mellitus type 1); antibodies which are used for the treatment of the Alzheimer's disease, e.g. Bapineuzumab, 5 Crenezumab, Gantenerumab, Ponezumab, R1 450, and Solanezumab; antibodies which are used for the treatment of asthma, e.g. Benralizumab, Enokizumab, Keliximab, Lebrikizumab, Omalizumab, Oxelumab, Pascolizumab, and Tralokinumab; 10 and antibodies which are used for the treatment of diverse disorders, e.g. Blosozumab (osteoporosis), CaroRx (Tooth decay), Fresolimumab (idiopathic pulmonary fibrosis, focal segmental glomerulosclerosis, cancer), Fulranumab (pain), Romosozumab (osteoporosis), Stamulumab (muscular dystrophy), Tanezumab (pain), and Ranibizumab (Neovascular age related macular degeneration). 15 The coding region of the inventive nucleic acid according to the first aspect of the present invention may occur as a mono-, di-, or even multicistronic nucleic acid, i.e. a nucleic acid which carries the coding sequences of one, two or more proteins or peptides. Such coding sequences in di-, or even multicistronic nucleic acids may be separated by at least one 20 internal ribosome entry site (IRES) sequence, e.g. as described herein or by signal peptides which induce the cleavage of the resulting polypeptide which comprises several proteins or peptides. According to the first aspect of the present invention, the inventive nucleic acid sequence 25 comprises a coding region, encoding a peptide or protein which comprises a therapeutic protein or a fragment, variant or derivative thereof. Preferably, the encoded therapeutic protein is no histone protein. In the context of the present invention such a histone protein is typically a strongly alkaline protein found in eukaryotic cell nuclei, which package and order the DNA into structural units called nucleosomes. Histone proteins are the chief 30 protein components of chromatin, act as spools around which DNA winds, and play a role in gene regulation. Without histones, the unwound DNA in chromosomes would be very long (a length to width ratio of more than 10 million to one in human DNA). For example, each human cell has about 1.8 meters of DNA, but wound on the histones it has about 90 WO 2013/120629 PCT/EP2013/000461 45 millimeters of chromatin, which, when duplicated and condensed during mitosis, result in about 120 micrometers of chromosomes. More preferably, in the context of the present invention such a histone protein is typically defined as a highly conserved protein selected from one of the following five major classes of histones: H1/H5, H2A, H2B, H3, and H4", 5 preferably selected from mammalian histone, more preferably from human histones or histone proteins. Such histones or histone proteins are typically organised into two super classes defined as core histones, comprising histones H2A, H2B, H3 and H4, and linker histones, comprising histones H1 and H5. 10 In this context, linker histones, preferably excluded from the scope of protection of the pending invention, preferably mammalian linker histones, more preferably human linker histones, are typically selected from H1, including H1F, particularly including H1FO, H1FNT, H1FOO, H1FX, and H1H1, particularly including HIST1H1A, HIST1H1B, HIST1H1C, HIST1H1D, HISTiHi1E, HIST1H1T; and 15 Furthermore, core histones, preferably excluded from the scope of protection of the pending invention, preferably mammalian core histones, more preferably human core histones, are typically selected from H2A, including H2AF, particularly including H2AFB1, H2AFB2, H2AFB3, H2AFJ, H2AFV, H2AFX, H2AFY, H2AFY2, H2AFZ, and H2A1, particularly 20 including HIST1H2AA, HIST1H2AB, HISTIH2AC, HIST1H2AD, HIST1H2AE, HIST1H2AG, HIST1 H2AI, HIST1 H2AJ, HIST1 H2AK, HIST1 H2AL, HIST 1H2AM, and H2A2, particularly including HIST2H2AA3, HIST2H2AC; H2B, including H2BF, particularly including H2BFM, H2BFO, H2BFS, H2BFWT H2B1, particularly including HIST1H2BA, HIST1H2BB, HIST1H2BC, HIST1H2BD, HIST1H2BE, HIST1H2BF, HIST1H2BG, HIST1H2BH, 25 HIST1 H2BI, HISTI H2BJ, HISTI1H2BK, HIST1 H2BL, HIST1 H2BM, HIST1 H2BN, HIST1H2BO, and H2B2, particularly including HIST2H2BE; H3, including H3A1, particularly including HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HISTIH3G, HIST1H3H, HIST1H31, HIST1H3J, and H3A2, particularly including HIST2H3C, and H3A3, particularly including HIST3H3; H4, including H41, particularly 30 including HIST1H4A, HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E, HIST1H4F, HIST1 H4G, HIST1H4H, HISTIH41, HIST1H4J, HIST1H4K, HIST1H4L, and H44, particularly including HIST4H4, and H5. WO 2013/120629 PCT/EP2013/000461 46 According to the first aspect of the present invention, the inventive nucleic acid sequence comprises a coding region, encoding a peptide or protein which comprises a therapeutic protein or a fragment, variant or derivative thereof. Preferably, the encoded therapeutic protein is no reporter protein (e.g. Luciferase, Green Fluorescent Protein (GFP), Enhanced 5 Green Fluorescent Protein (EGFP), p-Galactosidase) and no marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)). Preferably, the nucleic acid sequence of the invention does not contain a (bacterial) antibiotics resistance gene, in particular not a neo gene sequence (Neomycin resistance gene) or CAT gene sequence (chloramphenicol acetyl transferase, chloramphenicol 10 resistance gene). The inventive nucleic acid as define above, comprises or codes for a) a coding region, encoding a peptide or protein which comprises a therapeutic protein or a fragment, variant or derivative thereof; b) at least one histone stem-loop, and c) a poly(A) sequence or 15 polyadenylation signal; preferably for increasing the expression of said encoded peptide or protein, wherein the encoded peptide or protein is preferably no histone protein, no reporter protein and/or no marker or selection protein, as defined above. The elements b) to c) of the inventive nucleic acid may occur in the inventive nucleic acid in any order, i.e. the elements a), b) and c) may occur in the order a), b) and c) or a), c) and b) from 5' to 3' 20 direction in the inventive nucleic acid sequence, wherein further elements as described herein, may also be contained, such as a 5'-CAP structure, a poly(C) sequence, stabilization sequences, IRES sequences, etc. Each of the elements a) to c) of the inventive nucleic acid, particularly a) in di- or multicistronic constructs and/or each of the elements b) and c), more preferably element b) may also be repeated at least once, preferably twice or more in the 25 inventive nucleic acid. As an example, the inventive nucleic acid may show its sequence elements a), b) and optionally c) in e.g. the following order: 5' - coding region - histone stem-loop - poly(A) sequence - 3'; or 5' - coding region - histone stem-loop - polyadenylation signal - 3'; or 5' - coding region - poly(A) sequence - histone stem-loop - 3'; or 30 5' - coding region - polyadenylation signal- histone stem-loop - 3'; or 5' - coding region - coding region - histone stem-loop - polyadenylation signal - 3'; or 5' - coding region - histone stem-loop - histone stem-loop - poly(A) sequence - 3'; or WO 2013/120629 PCT/EP2013/000461 47 5' - coding region - histone stem-loop - histone stem-loop - polyadenylation signal- 3';etc. In this context it is particularly preferred that the inventive nucleic acid sequence comprises or codes for a) a coding region, encoding a peptide or protein which comprises a 5 therapeutic protein or fragment, variant or derivative thereof; b) at least one histone stem loop, and c) a poly(A) sequence or polyadenylation sequence; preferably for increasing the expression level of said encoded peptide or protein, wherein the encoded protein is preferably no histone protein, no reporter protein (e.g. Luciferase, GFP, EGFP, $ Galactosidase, particularly EGFP) and/or no marker or selection protein (e.g. alpha-Globin, 10 Galactokinase and Xanthine:Guanine phosphoribosyl transferase (GPT)). In a further preferred embodiment of the first aspect the inventive nucleic acid sequence as defined herein may also occur in the form of a modified nucleic acid. 15 In this context, the inventive nucleic acid sequence as defined herein may be modified to provide a "stabilized nucleic acid", preferably a stabilized RNA, more preferably an RNA that is essentially resistant to in vivo degradation (e.g. by an exo- or endo-nuclease). A stabilized nucleic acid may e.g. be obtained by modification of the G/C content of the coding region of the inventive nucleic acid sequence, by introduction of nucleotide 20 analogues (e.g. nucleotides with backbone modifications, sugar modifications or base modifications) or by introduction of stabilization sequences in the 3'- and/or 5' untranslated region of the inventive nucleic acid sequence. As mentioned above, the inventive nucleic acid sequence as defined herein may contain 25 nucleotide analogues/modifications e.g. backbone modifications, sugar modifications or base modifications. A backbone modification in connection with the present invention is a modification in which phosphates of the backbone of the nucleotides contained in inventive nucleic acid sequence as defined herein are chemically modified. A sugar modification in connection with the present invention is a chemical modification of the 30 sugar of the nucleotides of the inventive nucleic acid sequence as defined herein. Furthermore, a base modification in connection with the present invention is a chemical modification of the base moiety of the nucleotides of the nucleic acid molecule of the inventive nucleic acid sequence. In this context nucleotide analogues or modifications are WO 2013/120629 PCT/EP2013/000461 48 preferably selected from nucleotide analogues which are applicable for transcription and/or translation. In a particular preferred embodiment of the first aspect of the present invention the herein 5 defined nucleotide analogues/modifications are selected from base modifications which additionally increase the expression of the encoded protein and which are preferably selected from 2-ami no-6-ch loropuri neriboside-5'-triphosphate, 2-aminoadenosine-5' triphosphate, 2-thiocytidine-5'-tri phosphate, 2-thiouridi ne-5'-tri phosphate, 4-thiouridine-5' triphosphate, 5-aminoallylcytidine-5'-triphosphate, 5-aminoallyluridine-5'-triphosphate, 5 10 bromocytidi ne-5'-triphosphate, 5-bromouridi ne-5'-tri phosphate, 5-iodocytidine-5' triphosphate, 5-iodouridi ne-5'-triphosphate, 5-methylcytidi ne-5'-triphosphate, 5 methyluridi ne-5'-triphosphate, 6-azacytidi ne-5'-triphosphate, 6-azauridi ne-5'-tri phosphate, 6-ch loropuri neriboside-5'-tri phosphate, 7-deazaadenosi ne-5'-triphosphate, 7 deazaguanosi ne-5'-triphosphate, 8-azaadenosi ne-5'-triphosphate, 8-azidoadenosine-5' 15 triphosphate, benzimidazole-riboside-5'-triphosphate, N1 -methyladenosi ne-5'-triphosphate, Ni -methylguanosi ne-5'-triphosphate, N6-methyladenosi ne-5'-triphosphate, 06 methylguanosi ne-5'-triphosphate, pseudouridi ne-5'-triphosphate, or puromycin-5' triphosphate, xanthosine-5'-triphosphate. Particular preference is given to nucleotides for base modifications selected from the group of base-modified nucleotides consisting of 5 20 methylcytidi ne-5'-triphosphate, 7-deazaguanosi ne-5'-tri phosphate, 5-bromocytidine-5' triphosphate, and pseudouridi ne-5'-triphosphate. According to a further embodiment, the inventive nucleic acid sequence as defined herein can contain a lipid modification. Such a lipid-modified nucleic acid typically comprises a 25 nucleic acid as defined herein. Such a lipid-modified nucleic acid molecule of the inventive nucleic acid sequence as defined herein typically further comprises at least one linker covalently linked with that nucleic acid molecule, and at least one lipid covalently linked with the respective linker. Alternatively, the lipid-modified nucleic acid molecule comprises at least one nucleic acid molecule as defined herein and at least one (bifunctional) lipid 30 covalently linked (without a linker) with that nucleic acid molecule. According to a third alternative, the lipid-modified nucleic acid molecule comprises a nucleic acid molecule as defined herein, at least one linker covalently linked with that nucleic acid molecule, and at least one lipid covalently linked with the respective linker, and also at least one WO 2013/120629 PCT/EP2013/000461 49 (bifunctional) lipid covalently linked (without a linker) with that nucleic acid molecule. In this context it is particularly preferred that the lipid modification is present at the terminal ends of a linear inventive nucleic acid sequence. 5 According to another preferred embodiment of the first aspect of the invention, the inventive nucleic acid sequence as defined herein, particularly if provided as an (m)RNA, can therefore be stabilized against degradation by RNases by the addition of a so-called "5' CAP" structure. 10 According to a further preferred embodiment of the first aspect of the invention, the inventive nucleic acid sequence as defined herein can be modified by a sequence of at least 10 cytidines, preferably at least 20 cytidines, more preferably at least 30 cytidines (so-called "poly(C) sequence"). Particularly, the inventive nucleic acid sequence may contain or code for a poly(C) sequence of typically about 10 to 200 cytidine nucleotides, preferably about 15 10 to 100 cytidine nucleotides, more preferably about 10 to 70 cytidine nucleotides or even more preferably about 20 to 50 or even 20 to 30 cytidine nucleotides. This poly(C) sequence is preferably located 3' of the coding region comprised in the inventive nucleic acid according to the first aspect of the present invention. 20 In a particularly preferred embodiment of the present invention, the G/C content of the coding region, encoding at least one peptide or protein which comprises a therapeutic protein or a fragment, variant or derivative thereof of the inventive nucleic acid sequence as defined herein, is modified, particularly increased, compared to the G/C content of its particular wild type coding region, i.e. the unmodified coding region. The encoded amino 25 acid sequence of the coding region is preferably not modified compared to the coded amino acid sequence of the particular wild type coding region. The modification of the G/C-content of the coding region of the inventive nucleic acid sequence as defined herein is based on the fact that the sequence of any mRNA region to be 30 translated is important for efficient translation of that mRNA. Thus, the composition and the sequence of various nucleotides are important. In particular, mRNA sequences having an increased G (guanosine)/C (cytosine) content are more stable than mRNA sequences having an increased A (adenosine)/U (uracil) content. According to the invention, the codons of the WO 2013/120629 PCT/EP2013/000461 50 coding region are therefore varied compared to its wild type coding region, while retaining the translated amino acid sequence, such that they include an increased amount of G/C nucleotides. In respect to the fact that several codons code for one and the same amino acid (so-called degeneration of the genetic code), the most favourable codons for the stability 5 can be determined (so-called alternative codon usage). Depending on the amino acid to be encoded by the coding region of the inventive nucleic acid sequence as defined herein, there are various possibilities for modification of the nucleic acid sequence, e.g. the coding region, compared to its wild type coding region. In 10 the case of amino acids which are encoded by codons which contain exclusively G or C nucleotides, no modification of the codon is necessary. Thus, the codons for Pro (CCC or CCG), Arg (CGC or CGG), Ala (GCC or GCG) and Gly (GGC or GGG) require no modification, since no A or U is present. 15 In contrast, codons which contain A and/or U nucleotides can be modified by substitution of other codons which code for the same amino acids but contain no A and/or U. Examples of these are: the codons for Pro can be modified from CCU or CCA to CCC or CCG; 20 the codons for Arg can be modified from CGU or CGA or AGA or AGG to CGC or CGG; the codons for Ala can be modified from GCU or GCA to GCC or GCG; the codons for Gly can be modified from GGU or GGA to GGC or GGG. In other cases, although A or U nucleotides cannot be eliminated from the codons, it is 25 however possible to decrease the A and U content by using codons which contain a lower content of A and/or U nucleotides. Examples of these are: the codons for Phe can be modified from UUU to UUC; the codons for Leu can be modified from UUA, UUG, CUU or CUA to CUC or CUG; 30 the codons for Ser can be modified from UCU or UCA or AGU to UCC, UCG or AGC; the codon for Tyr can be modified from UAU to UAC; the codon for Cys can be modified from UGU to UGC; the codon for His can be modified from CAU to CAC; WO 2013/120629 PCT/EP2013/000461 51 the codon for Gln can be modified from CAA to CAG; the codons for lie can be modified from AUU or AUA to AUC; the codons for Thr can be modified from ACU or ACA to ACC or ACG; the codon for Asn can be modified from AAU to AAC; 5 the codon for Lys can be modified from AAA to AAG; the codons for Val can be modified from GUU or GUA to GUC or GUG; the codon for Asp can be modified from GAU to GAC; the codon for Glu can be modified from GAA to GAG; the stop codon UAA can be modified to UAG or UGA. 10 in the case of the codons for Met (AUG) and Trp (UGG), on the other hand, there is no possibility of sequence modification. The substitutions listed above can be used either individually or in all possible 15 combinations to increase the G/C content of the coding region of the inventive nucleic acid sequence as defined herein, compared to its particular wild type coding region (i.e. the original sequence). Thus, for example, all codons for Thr occurring in the wild type sequence can be modified to ACC (or ACG). In the above context, codons present in mRNA are shown. Therefore uridine present in an 20 mRNA may also be present as thymidine in the respective DNA coding for the particular mRNA. Preferably, the G/C content of the coding region of the inventive nucleic acid sequence as defined herein is increased by at least 7%, more preferably by at least 15%, particularly 25 preferably by at least 20%, compared to the G/C content of the wild type coding region. According to a specific embodiment at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, more preferably at least 70 %, even more preferably at least 80% and most preferably at least 90%, 95% or even 100% of the substitutable codons in the coding region encoding at least one peptide or protein which comprises a therapeutic protein or a fragment, variant or 30 derivative thereof are substituted, thereby increasing the G/C content of said coding region. In this context, it is particularly preferable to increase the G/C content of the coding region of the inventive nucleic acid sequence as defined herein, to the maximum (i.e. 100% of the WO 2013/120629 PCT/EP2013/000461 52 substitutable codons), compared to the wild type coding region. According to the invention, a further preferred modification of the coding region encoding at least one peptide or protein which comprises a therapeutic protein or a fragment, variant 5 or derivative thereof of the inventive nucleic acid sequence as defined herein, is based on the finding that the translation efficiency is also determined by a different frequency in the occurrence of tRNAs in cells. Thus, if so-called "rare codons" are present in the coding region of the inventive nucleic acid sequence as defined herein, to an increased extent, the corresponding modified nucleic acid sequence is translated to a significantly poorer degree 10 than in the case where codons coding for relatively "frequent" tRNAs are present. In this context the coding region of the inventive nucleic acid sequence is preferably modified compared to the corresponding wild type coding region such that at least one codon of the wild type sequence which codes for a tRNA which is relatively rare in the cell 15 is exchanged for a codon which codes for a tRNA which is relatively frequent in the cell and carries the same amino acid as the relatively rare tRNA. By this modification, the coding region of the inventive nucleic acid sequence as defined herein, is modified such that codons for which frequently occurring tRNAs are available are inserted. In other words, according to the invention, by this modification all codons of the wild type coding region 20 which code for a tRNA which is relatively rare in the cell can in each case be exchanged for a codon which codes for a tRNA which is relatively frequent in the cell and which, in each case, carries the same amino acid as the relatively rare tRNA. Which tRNAs occur relatively frequently in the cell and which, in contrast, occur relatively 25 rarely is known to a person skilled in the art; cf. e.g. Akashi, Curr. Opin. Genet. Dev. 2001, 11(6): 660-666. The codons which use for the particular amino acid the tRNA which occurs the most frequently, e.g. the Gly codon, which uses the tRNA which occurs the most frequently in the (human) cell, are particularly preferred. 30 According to the invention, it is particularly preferable to link the sequential G/C content which is increased, in particular maximized, in the coding region of the inventive nucleic acid sequence as defined herein, with the "frequent" codons without modifying the amino acid sequence of the peptide or protein encoded by the coding region of the nucleic acid WO 2013/120629 PCT/EP2013/000461 53 sequence. This preferred embodiment allows provision of a particularly efficiently translated and stabilized (modified) inventive nucleic acid sequence as defined herein. According to another preferred embodiment of the first aspect of the invention, the 5 inventive nucleic acid sequence as defined herein, preferably has additionally at least one 5' and/or 3' stabilizing sequence. These stabilizing sequences in the 5' and/or 3' untranslated regions have the effect of increasing the half-life of the nucleic acid, particularly of the mRNA in the cytosol. These stabilizing sequences can have 100% sequence identity to naturally occurring sequences which occur in viruses, bacteria and 10 eukaryotes, but can also be partly or completely synthetic. The untranslated sequences (UTR) of the (alpha-)globin gene, e.g. from Homo sapiens or Xenopus /aevis may be mentioned as an example of stabilizing sequences which can be used in the present invention for a stabilized nucleic acid. Another example of a stabilizing sequence has the general formula (C/U)CCANxCCC(U/A)Py.UC(C/U)CC (SEQ ID NO: 55), which is contained 15 in the 3'-UTRs of the very stable RNAs which code for (alpha-)globin, type(l)-collagen, 15 lipoxygenase or for tyrosine hydroxylase (cf. Holcik eta., Proc. NatI. Acad. Sci. USA 1997, 94: 2410 to 2414). Such stabilizing sequences can of course be used individually or in combination with one another and also in combination with other stabilizing sequences known to a person skilled in the art. In this context it is particularly preferred that the 3' 20 UTR sequence of the alpha globin gene is located 3' of the coding region encoding at least one peptide or protein which comprises a therapeutic protein or a fragment, variant or derivative thereof comprised in the inventive nucleic acid sequence according to the first aspect of the present invention. 25 Substitutions, additions or eliminations of bases are preferably carried out with the inventive nucleic acid sequence as defined herein, using a DNA matrix for preparation of the nucleic acid sequence by techniques of the well-known site directed mutagenesis or with an oligonucleotide ligation strategy (see e.g. Maniatis et a., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 3rd ed., Cold Spring Harbor, NY, 2001). 30 Any of the above modifications may be applied to the inventive nucleic acid sequence as defined herein and further to any nucleic acid as used in the context of the present invention and may be, if suitable or necessary, be combined with each other in any WO 2013/120629 PCT/EP2013/000461 54 combination, provided, these combinations of modifications do not interfere with each other in the respective nucleic acid. A person skilled in the art will be able to take his choice accordingly. 5 Nucleic acid sequences used according to the present invention as defined herein may be prepared using any method known in the art, including synthetic methods such as e.g. solid phase synthesis, as well as in vitro methods, such as in vitro transcription reactions or in vivo reactions, such as in vivo propagation of DNA plasmids in bacteria. 10 In such a process, for preparation of the inventive nucleic acid sequence as defined herein, especially if the nucleic acid is in the form of an mRNA, a corresponding DNA molecule may be transcribed in vitro. This DNA matrix preferably comprises a suitable promoter, e.g. a T7 or SP6 promoter, for in vitro transcription, which is followed by the desired nucleotide sequence for the nucleic acid molecule, e.g. mRNA, to be prepared and a termination 15 signal for in vitro transcription. The DNA molecule, which forms the matrix of the at least one RNA of interest, may be prepared by fermentative proliferation and subsequent isolation as part of a plasmid which can be replicated in bacteria. Plasmids which may be mentioned as suitable for the present invention are e.g. the plasmids pT7Ts (GenBank accession number U26404; Lai et a/., Development 1995, 121: 2349 to 2360), pGEM* 20 series, e.g. pGEM*-1 (GenBank accession number X65300; from Promega) and pSP64 (GenBank accession number X65327); cf. also Mezei and Storts, Purification of PCR Products, in: Griffin and Griffin (ed.), PCR Technology: Current Innovation, CRC Press, Boca Raton, FL, 2001. 25 The inventive nucleic acid sequence as defined herein as well as proteins or peptides as encoded by this nucleic acid sequence may comprise fragments or variants of those sequences. Such fragments or variants may typically comprise a sequence having a sequence identity with one of the above mentioned nucleic acids, or with one of the proteins or peptides or sequences, if encoded by the inventive nucleic acid sequence, of at 30 least 5%, 10%, 20%, 30%, 40%, 50%, 60%, preferably at least 70%, more preferably at least 80%, equally more preferably at least 85%, even more preferably at least 90% and most preferably at least 95% or even 97%, 98% or 99%, to the entire wild type sequence, either on nucleic acid level or on amino acid level. WO 2013/120629 PCT/EP2013/000461 55 "Fragments" of proteins or peptides in the context of the present invention (e.g. as encoded by the inventive nucleic acid sequence as defined herein) may comprise a sequence of a protein or peptide as defined herein, which is, with regard to its amino acid sequence (or its 5 encoded nucleic acid molecule), N-terminally, C-terminally and/or intrasequentially truncated/shortened compared to the amino acid sequence of the original (native) protein (or its encoded nucleic acid molecule). Such truncation may thus occur either on the amino acid level or correspondingly on the nucleic acid level. A sequence identity with respect to such a fragment as defined herein may therefore preferably refer to the entire protein or 10 peptide as defined herein or to the entire (coding) nucleic acid molecule of such a protein or peptide. Likewise, "fragments" of nucleic acids in the context of the present invention may comprise a sequence of a nucleic acid as defined herein, which is, with regard to its nucleic acid molecule 5'-, 3'- and/or intrasequentially truncated/shortened compared to the nucleic acid molecule of the original (native) nucleic acid molecule. A sequence identity 15 with respect to a fragment as defined herein may therefore preferably refer to the entire nucleic acid as defined herein and the preferred sequence identity level typically is as indicated herein. Fragments have the same biological function or specific activity or at least retain an activity of the natural full length protein of at least 50%, more preferably at least 70%, even more preferably at least 90% (measured in an appropriate functional assay, e.g. 20 an assay assessing the enzymatic activity of the fragment of the therapeutic protein or the binding activity thereof) as compared to the full-length native wt peptide or protein, e.g. its specific antigenic or therapeutic property. Accordingly, in a preferred embodiment, the "fragment" is a portion of the full-length (naturally occurring) wttherapeutic protein, which exerts therapeutic properties as indicated herein. 25 Furthermore also domains of a protein, like the extracellular domain, the intracellular domain or the transmembran domain and shortened or truncated versions of a protein may be understood to comprise/correspond to a fragment of a protein. 30 "Variants" of proteins or peptides as defined in the context of the present invention may be encoded by the inventive nucleic acid sequence as defined herein. Thereby, a protein or peptide may be generated, having an amino acid sequence which differs from the original sequence in one or more (2, 3, 4, 5, 6, 7 or more) mutation(s), such as one or more WO 2013/120629 PCT/EP2013/000461 56 substituted, inserted and/or deleted amino acid(s). The preferred level of sequence identity of "variants" in view of the full-length natural w protein sequence typically is as indicated herein. Preferably, variants have the same biological function or specific activity or at least retain an activity of the natural full length protein of at least 50%, more preferably at least 5 70%, even more preferably at least 90% (measured in an appropriate functional assay, e.g. an assay assessing the enzymatic activity of the variant of the therapeutic protein or the binding activity thereof) as compared to the full-length native peptide or protein, e.g. its specific therapeutic property. Accordingly, in a preferred embodiment, the "variant" is a variant of a therapeutic protein, which exerts therapeutic properties to the extent as 10 indicated herein. "Variants" of proteins or peptides as defined in the context of the present invention (e.g. as encoded by a nucleic acid as defined herein) may comprise conservative amino acid substitution(s) compared to their native, i.e. non-mutated physiological, sequence. Those 15 amino acid sequences as well as their encoding nucleotide sequences in particular fall under the term variants as defined herein. Substitutions in which amino acids, which originate from the same class, are exchanged for one another are called conservative substitutions. In particular, these are amino acids having aliphatic side chains, positively or negatively charged side chains, aromatic groups in the side chains or amino acids, the side 20 chains of which can enter into hydrogen bridges, e.g. side chains which have a hydroxyl function. This means that e.g. an amino acid having a polar side chain is replaced by another amino acid having a likewise polar side chain, or, for example, an amino acid characterized by a hydrophobic side chain is substituted by another amino acid having a likewise hydrophobic side chain (e.g. serine (threonine) by threonine (serine) or leucine 25 (isoleucine) by isoleucine (leucine)). Insertions and substitutions are possible, in particular, at those sequence positions which cause no modification to the three-dimensional structure or do not affect the binding region. Modifications to a three-dimensional structure by insertion(s) or deletion(s) can easily be determined e.g. using CD spectra (circular dichroism spectra) (Urry, 1985, Absorption, Circular Dichroism and ORD of Polypeptides, in: Modern 30 Physical Methods in Biochemistry, Neuberger eta. (ed.), Elsevier, Amsterdam). Furthermore, variants of proteins or peptides as defined herein, which may be encoded by the inventive nucleic acid sequence as defined herein, may also comprise those sequences, WO 2013/120629 PCT/EP2013/000461 57 wherein nucleotides of the nucleic acid are exchanged according to the degeneration of the genetic code, without leading to an alteration of the respective amino acid sequence of the protein or peptide, i.e. the amino acid sequence or at least part thereof may not differ from the original sequence in one or more mutation(s) within the above meaning. 5 In order to determine the percentage to which two sequences are identical, e.g. nucleic acid sequences or amino acid sequences as defined herein, preferably the amino acid sequences encoded by the inventive nucleic acid sequence as defined herein or the amino acid sequences themselves, the sequences can be aligned in order to be subsequently compared 10 to one another. Therefore, e.g. a position of a first sequence may be compared with the corresponding position of the second sequence. If a position in the first sequence is occupied by the same component as is the case at a position in the second sequence, the two sequences are identical at this position. If this is not the case, the sequences differ at this position. If insertions occur in the second sequence in comparison to the first 15 sequence, gaps can be inserted into the first sequence to allow a further alignment. If deletions occur in the second sequence in comparison to the first sequence, gaps can be inserted into the second sequence to allow a further alignment. The percentage to which two sequences are identical is then a function of the number of identical positions divided by the total number of positions including those positions which are only occupied in one 20 sequence. The percentage to which two sequences are identical can be determined using a mathematical algorithm. A preferred, but not limiting, example of a mathematical algorithm which can be used is the algorithm of Karlin et a. (1993), PNAS USA, 90:5873-5877 or Altschul et a. (1997), Nucleic Acids Res., 25:3389-3402. Such an algorithm is integrated in the BLAST program. Sequences which are identical to the sequences of the present 25 invention to a certain extent can be identified by this program. The inventive nucleic acid sequence as defined herein may encode derivatives of a peptide or protein. Such a derivative of a peptide or protein is a molecule that is derived from another molecule, such as said peptide or protein. A "derivative" typically contains the full 30 length sequence of the natural wtpeptide or protein and additional sequence features, e.g. at the N- or at the C-terminus, which may exhibit an additional function to the natural full length peptide/protein. Again such derivatives have the same biological function or specific activity or at least retain an activity of the natural wt full-length protein of at least 50%, WO 2013/120629 PCT/EP2013/000461 58 more preferably at least 70%, even more preferably at least 90% (measured in an appropriate functional assay, see above, e.g. a binding or an enzyme activity assay) as compared to the full-length native peptide or protein, e.g. its specific therapeutic property. Thereby, a "derivative" of a peptide or protein also encompasses (chimeric) fusion 5 peptides/proteins comprising a peptide or protein used in the present invention or a natural full-length protein (or variant/fragment thereof) fused to a distinct peptide/protein awarding e.g. two or more biological functions to the fusion peptide/protein. For example, the fusion may comprise a label, such as, for example, an epitope, e.g., a FLAG epitope or a V5 epitope or an HA epitope. For example, the epitope is a FLAG epitope. Such a tag is useful 10 for, for example, purifying the fusion protein. In this context, a "variant" of a protein or peptide may have at least 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid identity over a stretch of 10, 20, 30, 50, 75 or 100 amino acids of such protein or peptide. Analogously, a "variant" of a nucleic acid 15 sequence, or particularly, a fragment, may have at least 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% nucleotide identity over a stretch of 10, 20, 30, 50, 75 or 100 nucleotide of such nucleic acid sequence; typically, however, referring to the naturally occurring full length sequences. In case of "fragments" typically, sequence identity is determined for the fragment over the length (of the fragment) on the portion of the full-length protein (reflecting 20 the same length as the fragment), which exhibits the highest level of sequence identity. In a further preferred embodiment of the first aspect of the present invention the inventive nucleic acid sequence is associated with a vehicle, transfection or complexation agent for increasing the transfection efficiency and/or the immunostimulatory properties of the 25 inventive nucleic acid sequence. Particularly preferred agents in this context suitable for increasing the transfection efficiency are cationic or polycationic compounds, including protamine, nucleoline, spermine or spermidine, or other cationic peptides or proteins, such as poly-L-lysine (PLL), poly-arginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP22 30 derived or analog peptides, HSV VP22 (Herpes simplex), MAP, KALA or protein transduction domains (PTDs), PpT620, prolin-rich peptides, arginine-rich peptides, lysine rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia derived peptides (particularly from Drosophila antennapedia), pAntp, plsl, FGF, Lactoferrin, WO 2013/120629 PCT/EP2013/000461 59 Transportan, Buforin-2, Bac715-24, SynB, SynB(1), pVEC, hCT-derived peptides, SAP, or histones. Additionally, preferred cationic or polycationic proteins or peptides may be selected from the following proteins or peptides having the following total formula: (Arg),;(Lys)m;(His)n;(Orn)o;(Xaa), wherein I + m + n +o + x = 8-15, and I, m, n or o 5 independently of each other may be any number selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15, provided that the overall content of Arg, Lys, His and Orn represents at least 50% of all amino acids of the oligopeptide; and Xaa may be any amino acid selected from native (= naturally occurring) or non-native amino acids except of Arg, Lys, His or Orn; and x may be any number selected from 0, 1, 2, 3 or 4, provided, that the 10 overall content of Xaa does not exceed 50 % of all amino acids of the oligopeptide. Particularly preferred cationic peptides in this context are e.g. Arg 7 , Arga, Arg 9 , H 3 R 9 , RqH 3 , H 3 RqH 3 , YSSR 9 SSY, (RKH) 4 , Y(RKH) 2 R, etc. Further preferred cationic or polycationic compounds, which can be used as transfection agent may include cationic polysaccharides, for example chitosan, polybrene, cationic polymers, e.g. polyethyleneimine (PEI), cationic 15 lipids, e.g. DOTMA: [1-(2,3-sioleyloxy)propyl)]-N,N,N-trimethylammonium chloride, DMRIE, di-C14-amidine, DOTIM, SAINT, DC-Chol, BGTC, CTAP, DOPC, DODAP, DOPE: Dioleyl phosphatidylethanol-amine, DOSPA, DODAB, DOIC, DMEPC, DOGS: Dioctadecylamidoglicylspermin, DIMRI: Dimyristo-oxypropyl dimethyl hydroxyethyl ammonium bromide, DOTAP: dioleoyloxy-3-(trimethylammonio)propane, DC-6-14: 0,0 20 ditetradecanoyl-N-(a-trimethylammonioacetyl)diethanolamine chloride, CLIP1: rac-[(2,3 dioctadecyloxypropyl)(2-hydroxyethyl)]-dimethylammonium chloride, CLIP6: rac-[2(2,3 dihexadecyloxypropyl-oxymethyloxy)ethyl]trimethylammonium, CLIP9: rac-[2(2,3 dihexadecyloxypropyl-oxysuccinyloxy)ethyll-trimethylammonium, oligofectamine, or cationic or polycationic polymers, e.g. modified polyaminoacids, such as p-aminoacid 25 polymers or reversed polyamides, etc., modified polyethylenes, such as PVP (poly(N-ethyl 4-vinylpyridinium bromide)), etc., modified acrylates, such as pDMAEMA (poly(dimethylaminoethyl methylacrylate)), etc., modified Amidoamines such as pAMAM (poly(amidoamine)), etc., modified polybetaaminoester (PBAE), such as diamine end modified 1,4 butanediol diacrylate-co-5-amino-1-pentanol polymers, etc., dendrimers, such 30 as polypropylamine dendrimers or pAMAM based dendrimers, etc., polyimine(s), such as PEI: poly(ethyleneimine), poly(propyleneimine), etc., polyallylamine, sugar backbone based polymers, such as cyclodextrin based polymers, dextran based polymers, chitosan, etc., silan backbone based polymers, such as PMOXA-PDMS copolymers, etc., blockpolymers WO 2013/120629 PCT/EP2013/000461 60 consisting of a combination of one or more cationic blocks (e.g. selected from a cationic polymer as mentioned above) and of one or more hydrophilic or hydrophobic blocks (e.g polyethyleneglycole); etc. 5 In this context it is particularly preferred that the inventive nucleic acid is complexed at least partially with a cationic or polycationic compound, preferably cationic proteins or peptides. Partially means that only a part of the inventive nucleic acid is complexed with a cationic or polycationic compound and that the rest of the inventive nucleic acid is in uncomplexed form ("free"). Preferably the ratio of complexed nucleic acid to: free nucleic 10 acid is selected from a range. of about 5:1 (w/w) to about 1:10 (w/w), more preferably from a range of about 4:1 (w/w) to about 1:8 (w/w), even more preferably from a range of about 3:1 (w/w) to about 1:5 (w/w) or 1:3 (w/w), and most preferably the ratio of complexed nucleic acid to free nucleic acid is selected from a ratio of about 1:1 (w/w). 15 It is preferred that the nucleic acid sequence of the invention is provided in either naked form or complexed, e.g. by polycationic compounds of whatever chemical structure, preferably polycationic (poly)peptides or synthetic polycationic compounds. Preferably, the nucleic acid sequence is not provided together with a packaging cell. 20 In a further aspect the invention provides for a composition or kit or kit of parts comprising a plurality or more than one, preferably 2 to 10, more preferably 2 to 5, most preferably 2 to 4 of the inventive nucleic acid sequences as defined herein. These inventive compositions comprise more than one inventive nucleic acid sequences, preferably encoding different peptides or proteins which comprise preferably different therapeutic proteins or fragments, 25 variants or derivatives thereof. According to a further aspect, the present invention also provides a method for increasing the expression of an encoded peptide or protein comprising the steps, e.g. a) providing the inventive nucleic acid sequence as defined herein or the inventive composition comprising 30 a plurality (which means typically more than 1, 2, 3, 4, 5, 6 or more than 10 nucleic acids, e.g. 2 to 10, preferably 2 to 5 nucleic acids) of inventive nucleic acid sequences as defined herein, b) applying or administering the inventive nucleic acid sequence as defined herein or the inventive composition comprising a plurality of inventive nucleic acid sequences as WO 2013/120629 PCT/EP2013/000461 61 defined herein to an expression system, e.g. to a cell-free expression system, a cell (e.g. an expression host cell or a somatic cell), a tissue or an organism. The method may be applied for laboratory, for research, for diagnostic, for commercial production of peptides or proteins and/or for therapeutic purposes. In this context, typically after preparing the 5 inventive nucleic acid sequence as defined herein or of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein, it is typically applied or administered to a cell-free expression system, a cell (e.g. an expression host cell or a somatic cell), a tissue or an organism, e.g. in naked or complexed form or as a pharmaceutical composition as described herein, preferably via transfection or by using any 10 of the administration modes as described herein. The method may be carried out in vitro, in vivo or ex vivo. The method may furthermore be carried out in the context of the treatment of a specific disease, preferably as defined herein. In this context in vitro is defined herein as transfection or transduction of the inventive 15 nucleic acid as defined herein or of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein into cells in culture outside of an organism; in vivo is defined herein as transfection or transduction of the inventive nucleic acid or of the inventive composition comprising a plurality of inventive nucleic acid sequences (which means typically more than 1, 2, 3, 4, 5, 6 or more than 10 nucleic acids, 20 e.g. 2 to 10, preferably 2 to 5 nucleic acids) into cells by application of the inventive nucleic acid or of the inventive composition to the whole organism or individual and ex vivo is defined herein as transfection or transduction of the inventive nucleic acid or of the inventive composition comprising a plurality of inventive nucleic acid sequences into cells outside of an organism or individual and subsequent application of the transfected cells to 25 the organism or individual. Likewise, according to another aspect, the present invention also provides the use of the inventive nucleic acid sequence as defined herein or of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein, preferably for 30 diagnostic or therapeutic purposes, for increasing the expression of an encoded peptide or protein, particularly in gene therapy e.g. by applying or administering the inventive nucleic acid sequence as defined herein or of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein, e.g. to a cell-free expression system, a WO 2013/120629 PCT/EP2013/000461 62 cell (e.g. an expression host cell or a somatic cell), a tissue or an organism. The use may be applied for laboratory, for research, for diagnostic for commercial production of peptides or proteins and/or for therapeutic purposes, preferably for gene therapy. In this context, typically after preparing the inventive nucleic acid sequence as defined herein or of the 5 inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein, it is typically applied or administered to a cell-free expression system, a cell (e.g. an expression host cell or a somatic cell), a tissue or an organism, preferably in naked form or complexed form, or as a pharmaceutical composition as described herein, preferably via transfection or by using any of the administration modes as described herein. The use may 10 be carried out in vitro, in vivo or ex vivo. The use may furthermore be carried out in the context of the treatment of a specific disease, preferably as defined herein. In yet another aspect the present invention also relates to an inventive expression system comprising an inventive nucleic acid sequence or expression vector or plasmid according to 15 the first aspect of the present invention. In this context the expression system may be a cell free expression system (e.g. an in vitro transcription/translation system), a cellular expression system (e.g. mammalian cells like CHO cells, insect cells, yeast cells, bacterial cells like E. coh) or organisms used for expression of peptides or proteins (e.g. plants or animals like cows). 20 Additionally, according to another aspect, the present invention also relates to the use of the inventive nucleic acid as defined herein or of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein for the preparation of a pharmaceutical composition for increasing the expression of an encoded peptide or protein, 25 particularly for use in gene therapy, e.g. for treating a disease, preferably as defined herein, e.g. applying or administering the inventive nucleic acid as defined herein or of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein to a cell (e.g. an expression host cell or a somatic cell), a tissue or an organism, preferably in naked form or complexed form or as a pharmaceutical composition as 30 described herein, more preferably using any of the administration modes as described herein. WO 2013/120629 PCT/EP2013/000461 63 Accordingly, in a particular preferred aspect, the present invention also provides a pharmaceutical composition, comprising an inventive nucleic acid as defined herein or an inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein and optionally a pharmaceutically acceptable carrier and/or vehicle. 5 As a first ingredient, the inventive pharmaceutical composition comprises at least one inventive nucleic acid as defined herein. As a second ingredient the inventive pharmaceutical composition may optional comprise at 10 least one additional pharmaceutically active component. A pharmaceutically active component in this connection is a compound that has a therapeutic effect to heal, ameliorate or prevent a particular indication or disease as mentioned herein. Such compounds include, without implying any limitation, peptides or proteins, preferably as defined herein, nucleic acids, preferably as defined herein, (therapeutically active) low 15 molecular weight organic or inorganic compounds (molecular weight less than 5000, preferably less than 1000), sugars, antigens or antibodies, preferably as defined herein, therapeutic agents already known in the prior art, antigenic cells, antigenic cellular fragments, cellular fractions; cell wall components (e.g. polysaccharides), modified, attenuated or de-activated (e.g. chemically or by irradiation) pathogens (virus, bacteria etc.), 20 adjuvants, preferably as defined herein, etc. Furthermore, the inventive pharmaceutical composition may comprise a pharmaceutically acceptable carrier and/or vehicle. In the context of the present invention, a pharmaceutically acceptable carrier typically includes the liquid or non-liquid basis of the 25 inventive pharmaceutical composition. If the inventive pharmaceutical composition is provided in liquid form, the carrier will typically be pyrogen-free water; isotonic saline or buffered (aqueous) solutions, e.g phosphate, citrate etc. buffered solutions. The injection buffer may be hypertonic, isotonic or hypotonic with reference to the specific reference medium, i.e. the buffer may have a higher, identical or lower salt content with reference to 30 the specific reference medium, wherein preferably such concentrations of the afore mentioned salts may be used, which do not lead to damage of cells due to osmosis or other concentration effects. Reference media are e.g. liquids occurring in "in vivd' methods, such as blood, lymph, cytosolic liquids, or other body liquids, or e.g. liquids, which may be WO 2013/120629 PCT/EP2013/000461 64 used as reference media in "in vitrd' methods, such as common buffers or liquids. Such common buffers or liquids are known to a skilled person. Ringer-Lactate solution is particularly preferred as a liquid basis. 5 However, one or more compatible solid or liquid fillers or diluents or encapsulating compounds may be used as well for the inventive pharmaceutical composition, which are suitable for administration to a patient to be treated. The term "compatible" as used here means that these constituents of the inventive pharmaceutical composition are capable of being mixed with the inventive nucleic acid as defined herein in such a manner that no 10 interaction occurs which would substantially reduce the pharmaceutical effectiveness of the inventive pharmaceutical composition under typical use conditions. According to a specific embodiment, the inventive pharmaceutical composition may comprise an adjuvant. In this context, an adjuvant may be understood as any compound, 15 which is suitable to initiate or increase an immune response of the innate immune system, i.e. a non-specific immune response. With other words, when administered, the inventive pharmaceutical composition preferably elicits an innate immune response due to the adjuvant, optionally contained therein. Preferably, such an adjuvant may be selected from an adjuvant known to a skilled person and suitable for the present case, i.e. supporting the 20 induction of an innate immune response in a mammal, e.g. an adjuvant protein as defined above or an adjuvant as defined in the following. Particularly preferred as adjuvants suitable for depot and delivery are cationic or polycationic compounds as defined above for the inventive nucleic acid sequence as 25 vehicle, transfection or complexation agent. Further additives which may be included in the inventive pharmaceutical composition are emulsifiers, such as, for example, Tween*; wetting agents, such as, for example, sodium lauryl sulfate; colouring agents; taste-imparting agents, pharmaceutical carriers; tablet 30 forming agents; stabilizers; antioxidants; preservatives. The inventive pharmaceutical composition can also additionally contain any further compound, which is known to be immunostimulating due to its binding affinity (as ligands) WO 2013/120629 PCT/EP2013/000461 65 to human Toll-like receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, or due to its binding affinity (as ligands) to murine Toll-like receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR1 0, TLR1 1, TLR1 2 or TLR1 3. 5 The inventive pharmaceutical composition may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, intracranial, transdermal, intradermal, intrapulmonal, intraperitoneal, 10 intracardial, intraarterial, and sublingual injection or infusion techniques. Preferably, the inventive pharmaceutical composition may be administered by parenteral injection, more preferably by subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, intracranial, transdermal, 15 intradermal, intrapulmonal, intraperitoneal, intracardial, intraarterial, and sublingual injection or via infusion techniques. Particularly preferred is intradermal and intramuscular injection. Sterile injectable forms of the inventive pharmaceutical compositions may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending 20 agents. The inventive pharmaceutical composition as defined herein may also be administered orally in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. 25 The inventive pharmaceutical composition may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, e.g. including diseases of the skin or of any other accessible epithelial tissue. Suitable topical formulations are readily prepared for each of these areas or organs. For 30 topical applications, the inventive pharmaceutical composition may be formulated in a suitable ointment, containing the inventive nucleic acid as defined herein suspended or dissolved in one or more carriers. WO 2013/120629 PCT/EP2013/000461 66 The inventive pharmaceutical composition typically comprises a "safe and effective amount" of the components of the inventive pharmaceutical composition, particularly of the inventive nucleic acid sequence(s) as defined herein. As used herein, a "safe and effective amount" means an amount of the inventive nucleic acid sequence(s) as defined herein as 5 such that is sufficient to significantly induce a positive modification of a disease or disorder as defined herein. At the same time, however, a "safe and effective amount" is small enough to avoid serious side-effects and to permit a sensible relationship between advantage and risk. The determination of these limits typically lies within the scope of sensible medical judgment. 10 The present invention furthermore provides several applications and uses of the inventive nucleic acid sequence as defined herein, of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein, of the inventive pharmaceutical composition, comprising the inventive nucleic acid sequence as defined 15 herein or of kits comprising same. According to one specific aspect, the present invention is directed to the first medical use of the inventive nucleic acid sequence as defined herein or of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein as a 20 medicament, particularly in gene therapy, preferably for the treatment of diseases as defined herein. According to another aspect, the present invention is directed to the second medical use of the inventive nucleic acid sequence as defined herein or of the inventive composition 25 comprising a plurality of inventive nucleic acid sequences as defined herein, for the treatment of diseases as defined herein, preferably to the use of the inventive nucleic acid sequence as defined herein, of the inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein, of a pharmaceutical composition comprising same or of kits comprising same for the preparation of a medicament for the prophylaxis, 30 treatment and/or amelioration of diseases as defined herein. Preferably, the pharmaceutical composition is used or to be administered to a patient in need thereof for this purpose. WO 2013/120629 PCT/EP2013/000461 67 Preferably, diseases as mentioned herein are preferably selected from infectious diseases, neoplasms (e.g. cancer or tumour diseases), diseases of the blood and blood-forming organs, endocrine, nutritional and metabolic diseases, diseases of the nervous system, diseases of the circulatory system, diseases of the respiratory system, diseases of the 5 digestive system, diseases of the skin and subcutaneous tissue, diseases of the musculoskeletal system and connective tissue, and diseases of the genitourinary system. In this context particularly preferred are inherited diseases selected from: 1p 3 6 deletion syndrome; 18p deletion syndrome; 21-hydroxylase deficiency; 45,X (Turner syndrome); 10 47,XX,+21 (Down syndrome); 47,XXX (triple X syndrome); 47,XXY (Klinefelter syndrome); 47,XY,+21 (Down syndrome); 47,XYY syndrome; 5-ALA dehydratase-deficient porphyria (ALA dehydratase deficiency); 5-aminolaevulinic dehydratase deficiency porphyria (ALA dehydratase deficiency); 5p deletion syndrome (Cri du chat) 5p- syndrome (Cri du chat); A-T (ataxia-telangiectasia); AAT (alpha-1 antitrypsin deficiency); Absence of vas deferens 15 (congenital bilateral absence of vas deferens); Absent vasa (congenital bilateral absence of vas deferens); aceruloplasminemia; ACG2 (achondrogenesis type 11); ACH (achondroplasia); Achondrogenesis type 1l; achondroplasia; Acid beta-glucosidase deficiency (Gaucher disease type 1); Acrocephalosyndactyly (Apert) (Apert syndrome); acrocephalosyndactyly, type V (Pfeiffer syndrome); Acrocephaly (Apert syndrome); Acute cerebral Gaucher's disease 20 (Gaucher disease type 2); acute intermittent porphyria; ACY2 deficiency (Canavan disease); AD (Alzheimer's disease); Adelaide-type craniosynostosis (Muenke syndrome); Adenomatous Polyposis Coli (familial adenomatous polyposis); Adenomatous Polyposis of the Colon (familial adenomatous polyposis); ADP (ALA dehydratase deficiency); adenylosuccinate lyase deficiency; Adrenal gland disorders (21-hydroxylase deficiency); 25 Adrenogenital syndrome (21-hydroxylase deficiency); Adrenoleukodystrophy; AIP (acute intermittent porphyria); AIS (androgen insensitivity syndrome); AKU (alkaptonuria); ALA dehydratase porphyria (ALA dehydratase deficiency); ALA-D porphyria (ALA dehydratase deficiency); ALA dehydratase deficiency; Alcaptonuria (alkaptonuria); Alexander disease; alkaptonuria; Alkaptonuric ochronosis (alkaptonuria); alpha-1 antitrypsin deficiency; alpha 30 1 proteinase inhibitor (alpha-1 antitrypsin deficiency); alpha-1 related emphysema (alpha-1 antitrypsin deficiency); Alpha-galactosidase A deficiency (Fabry disease); ALS (amyotrophic lateral sclerosis); Alstrom syndrome; ALX (Alexander disease); Alzheimer disease; Amelogenesis Imperfecta; Amino levulinic acid dehydratase deficiency (ALA dehydratase WO 2013/120629 PCT/EP2013/000461 68 deficiency); Aminoacylase 2 deficiency (Canavan disease); amyotrophic lateral sclerosis; Anderson-Fabry disease (Fabry disease); androgen insensitivity syndrome; Anemia; Anemia, hereditary sideroblastic (X-linked sideroblastic anemia); Anemia, sex-linked hypochromic sideroblastic (X-linked sideroblastic anemia); Anemia, splenic, familial (Gaucher disease); 5 Angelman syndrome; Angiokeratoma Corporis Diffusum (Fabry's disease); Angiokeratoma diffuse (Fabry's disease); Angiomatosis retinae (von Hippel-Lindau disease); ANH1 (X-linked sideroblastic anemia); APC resistance, Leiden type (factor V Leiden thrombophilia); Apert syndrome; AR deficiency (androgen insensitivity syndrome); AR-CMT2 ee (Charcot-Mare Tooth disease, type 2); Arachnodactyly (Marfan syndrome); ARNSHL (Nonsyndromic 10 deafness#autosomal recessive); Arthro-ophthalmopathy, hereditary progressive (Stickler syndrome#COL2A1); Arthrochalasis multiplex congenita (Ehlers-Danlos syndrome#arthrochalasia type); AS (Angelman syndrome); Asp deficiency (Canavan disease); Aspa deficiency (Canavan disease); Aspartoacylase deficiency (Canavan disease); ataxia-telangiectasia; Autism-Dementia-Ataxia-Loss of Purposeful Hand Use syndrome (Rett 15 syndrome); autosomal dominant juvenile ALS (amyotrophic lateral sclerosis, type 4); Autosomal dominant opitz G/BBB syndrome (22q11.2 deletion syndrome); autosomal recessive form of juvenile ALS type 3 (Amyotrophic lateral sclerosis#type 2); Autosomal recessive nonsyndromic hearing loss (Nonsyndromic deafness#autosomal recessive); Autosomal Recessive Sensorineural Hearing Impairment and Goiter (Pendred syndrome); 20 AxD (Alexander disease); Ayerza syndrome (primary pulmonary hypertension); B variant of the Hexosaminidase GM2 gangliosidosis (Sandhoff disease); BANF (neurofibromatosis 2); Beare-Stevenson cutis gyrata syndrome; Benign paroxysmal peritonitis (Mediterranean fever, familial); Benjamin syndrome; beta thalassemia; BH4 Deficiency (tetrahydrobiopterin deficiency); Bilateral Acoustic Neurofibromatosis (neurofibromatosis 2); biotinidase 25 deficiency; bladder cancer; Bleeding disorders (factor V Leiden thrombophilia); Bloch Sulzberger syndrome (incontinentia pigmenti); Bloom syndrome; Bone diseases; Bone marrow diseases (X-linked sideroblastic anemia); Bonnevie-Ullrich syndrome (Turner syndrome); Bourneville disease (tuberous sclerosis); Bourneville phakomatosis (tuberous sclerosis); Brain diseases (prion disease); breast cancer; Birt-Hogg-Dub6 syndrome; Brittle 30 bone disease (osteogenesis imperfecta); Broad Thumb-Hallux syndrome (Rubinstein-Taybi syndrome); Bronze Diabetes (hemochromatosis); Bronzed cirrhosis (hemochromatosis); Bulbospinal muscular atrophy, X-linked (Kennedy disease); Burger-Grutz syndrome (lipoprotein lipase deficiency, familial); CADASIL; CGD Chronic Granulomatous Disorder; WO 2013/120629 PCT/EP2013/000461 69 Camptomelic dysplasia; Canavan disease; Cancer; Cancer Family syndrome (hereditary nonpolyposis colorectal cancer); Cancer of breast (breast cancer); Cancer of the bladder (bladder cancer); Carboxylase Deficiency, Multiple, Late-Onset (biotinidase deficiency); Cardiomyopathy (Noonan syndrome); Cat cry syndrome (Cri du chat); CAVD (congenital 5 bilateral absence of vas deferens); Caylor cardiofacial syndrome (22q11.2 deletion syndrome); CBAVD (congenital bilateral absence of vas deferens); Celiac Disease; CEP (congenital erythropoietic porphyria); Ceramide trihexosidase deficiency (Fabry disease); Cerebelloretinal Angiomatosis, familial (von Hippel-Lindau disease); Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL); Cerebral autosomal 10 dominant ateriopathy with subcortical infarcts and leukoencephalopathy (CADASIL); Cerebral sclerosis (tuberous sclerosis); Cerebroatrophic Hyperammonemia (Rett syndrome); Cerebroside Lipidosis syndrome (Gaucher disease); CF (cystic fibrosis); CH (congenital hypothyroidism); Charcot disease (amyotrophic lateral sclerosis); Charcot-Marie-Tooth disease; Chondrodystrophia (achondroplasia); Chondrodystrophy syndrome 15 (achondroplasia); Chondrodystrophy with sensorineural deafness (otospondylomegaepiphyseal dysplasia); Chondrogenesis imperfecta (achondrogenesis, type 1l); Choreoathetosis self-mutilation hyperuricemia syndrome (Lesch-Nyhan syndrome); Classic Galactosemia (galactosemia); Classical Ehlers-Danlos syndrome (Ehlers-Danlos syndrome#classical type) ; Classical Phenylketonuria (phenylketonuria); Cleft lip and palate 20 (Stickler syndrome); Cloverleaf skull with thanatophoric dwarfism (Thanatophoric dysplasia#type 2); CLS (Coffin-Lowry syndrome); CMT (Charcot-Marie-Tooth disease); Cockayne syndrome; Coffin-Lowry syndrome; collagenopathy, types 11 and Xl; Colon Cancer, familial Nonpolyposis (hereditary nonpolyposis colorectal cancer); Colon cancer, familial (familial adenomatous polyposis); Colorectal Cancer; Complete HPRT deficiency 25 (Lesch-Nyhan syndrome); Complete hypoxanthine-guanine phosphoribosy transferase deficiency (Lesch-Nyhan syndrome); Compression neuropathy (hereditary neuropathy with liability to pressure palsies); Congenital adrenal hyperplasia (21-hydroxylase deficiency); congenital bilateral absence of vas deferens (Congenital absence of the vas deferens); Congenital erythropoietic porphyria; Congenital heart disease; Congenital hypomyelination 30 (Charcot-Marie-Tooth disease#Type 1/Charcot-Marie-Tooth disease#Type 4); Congenital hypothyroidism; Congenital methemoglobinemia (Methemoglobinemia#Congenital methaemoglobinaemia); Congenital osteosclerosis (achondroplasia); Congenital sideroblastic anaemia (X-linked sideroblastic anemia); Connective tissue disease; WO 2013/120629 PCT/EP2013/000461 70 Conotruncal anomaly face syndrome (22q 1.2 deletion syndrome); Cooley's Anemia (beta thalassemia); Copper storage disease (Wilson disease); Copper transport disease (Menkes disease); Coproporphyria, hereditary (hereditary coproporphyria); Coproporphyrinogen oxidase deficiency (hereditary coproporphyria); Cowden syndrome; CPO deficiency 5 (hereditary coproporphyria); CPRO deficiency (hereditary coproporphyria); CPX deficiency (hereditary coproporphyria); Craniofacial dysarthrosis (Crouzon syndrome); Craniofacial Dysostosis (Crouzon syndrome); Cretinism (congenital hypothyroidism); Creutzfeldt-Jakob disease (prion disease); Cri du chat (Crohn's disease, fibrostenosing); Crouzon syndrome; Crouzon syndrome with acanthosis nigricans (Crouzonodermoskeletal syndrome); 10 Crouzonodermoskeletal syndrome; CS (Cockayne syndrome)(Cowden syndrome); Curschmann-Batten-Steinert syndrome (myotonic dystrophy); cutis gyrata syndrome of Beare-Stevenson (Beare-Stevenson cutis gyrata syndrome); Disorder Mutation Chromosome; D-glycerate dehydrogenase deficiency (hyperoxaluria, primary); Dappled metaphysis syndrome (spondyloepimetaphyseal dysplasia, Strudwick type); DAT - Dementia 15 Alzheimer's type (Alzheimer disease); Genetic hypercalciuria (Dent's disease); DBMD (muscular dystrophy, Duchenne and Becker types); Deafness with goiter (Pendred syndrome); Deafness-retinitis pigmentosa syndrome (Usher syndrome); Deficiency disease, Phenylalanine Hydroxylase (phenylketonuria); Degenerative nerve diseases; de Grouchy syndrome 1 (De Grouchy Syndrome); Dejerine-Sottas syndrome (Charcot-Marie-Tooth 20 disease); Delta-aminolevulinate dehydratase deficiency porphyria (ALA dehydratase deficiency); Dementia (CADASIL); demyelinogenic leukodystrophy (Alexander disease); Dermatosparactic type of Ehlers-Danlos syndrome (Ehlers-Danlos syndrome#dermatosparaxis type); Dermatosparaxis (Ehlers-Danlos syndrome#dermatosparaxis type) ; developmental disabilities; dHMN (Amyotrophic lateral 25 sclerosis#type 4 ); DHMN-V (distal spinal muscular atrophy, type V); DHTR deficiency (androgen insensitivity syndrome); Diffuse Globoid Body Sclerosis (Krabbe disease); DiGeorge syndrome; Dihydrotestosterone receptor deficiency (androgen insensitivity syndrome); distal spinal muscular atrophy, type V; DM1 (Myotonic dystrophy#typel); DM2 (Myotonic dystrophy#type2); Down syndrome; DSMAV (distal spinal muscular atrophy, 30 type V); DSN (Charcot-Marie-Tooth disease#type 4); DSS (Charcot-Marie-Tooth disease, type 4); Duchenne/Becker muscular dystrophy (muscular dystrophy, Duchenne and Becker types); Dwarf, achondroplastic (achondroplasia); Dwarf, thanatophoric (thanatophoric dysplasia); Dwarfism; Dwarfism-retinal atrophy-deafness syndrome (Cockayne syndrome); WO 2013/120629 PCT/EP2013/000461 71 dysmyelinogenic leukodystrophy (Alexander disease); Dystrophia myotonica (myotonic dystrophy); dystrophia retinae pigmentosa-dysostosis syndrome (Usher syndrome); Early Onset familial alzheimer disease (EOFAD) (Alzheimer disease); EDS (Ehlers-Danlos syndrome); Ehlers-Danlos syndrome; Ekman-Lobstein disease (osteogenesis imperfecta); 5 Entrapment neuropathy (hereditary neuropathy with liability to pressure palsies); Epiloia (tuberous sclerosis); EPP (erythropoietic protoporphyria); Erythroblastic anemia (beta thalassemia); Erythrohepatic protoporphyria (erythropoietic protoporphyria); Erythroid 5 aminolevulinate synthetase deficiency (X-linked sideroblastic anemia); Erythropoietic porphyria (congenital erythropoietic porphyria); Erythropoietic protoporphyria; 10 Erythropoietic uroporphyria (congenital erythropoietic porphyria); Eye cancer (retinoblastoma FA - Friedreich ataxia); Fabry disease; Facial injuries and disorders; Factor V Leiden thrombophilia; FALS (amyotrophic lateral sclerosis); familial acoustic neuroma (neurofibromatosis type 11); familial adenomatous polyposis; familial Alzheimer disease (FAD) (Alzheimer disease); familial amyotrophic lateral sclerosis (amyotrophic lateral 15 sclerosis); familial dysautonomia; familial fat-induced hypertriglyceridemia (lipoprotein lipase deficiency, familial); familial hemochromatosis (hemochromatosis); familial LPL deficiency (lipoprotein lipase deficiency, familial); familial nonpolyposis colon cancer (hereditary nonpolyposis colorectal cancer); familial paroxysmal polyserositis (Mediterranean fever, familial); familial PCT (porphyria cutanea tarda); familial pressure 20 sensitive neuropathy (hereditary neuropathy with liability to pressure palsies); familial primary pulmonary hypertension (FPPH) (primary pulmonary hypertension); Familial Turner syndrome (Noonan syndrome); familial vascular leukoencephalopathy (CADASIL); FAP (familial adenomatous polyposis); FD (familial dysautonomia); Female pseudo-Turner syndrome (Noonan syndrome); Ferrochelatase deficiency (erythropoietic protoporphyria); 25 ferroportin disease (Haemochromatosis#type 4); Fever (Mediterranean fever, familial); FG syndrome; FGFR3-associated coronal synostosis (Muenke syndrome); Fibrinoid degeneration of astrocytes (Alexander disease); Fibrocystic disease of the pancreas (cystic fibrosis); FMF (Mediterranean fever, familial); Folling disease (phenylketonuria); fra(X) syndrome (fragile X syndrome); fragile X syndrome; Fragilitas ossium (osteogenesis 30 imperfecta); FRAXA syndrome (fragile X syndrome); FRDA (Friedreich's ataxia); Friedreich ataxia (Friedreich's ataxia); Friedreich's ataxia; FXS (fragile X syndrome); G6PD deficiency; Galactokinase deficiency disease (galactosemia); Galactose-1 -phosphate uridyl-transferase deficiency disease (galactosemia); galactosemia; Galactosylceramidase deficiency disease WO 2013/120629 PCT/EP2013/000461 72 (Krabbe disease); Galactosylceramide lipidosis (Krabbe disease); galactosylcerebrosidase deficiency (Krabbe disease); galactosylsphingosine lipidosis (Krabbe disease); GALC deficiency (Krabbe disease); GALT deficiency (galactosemia); Gaucher disease; Gaucher like disease (pseudo-Gaucher disease); GBA deficiency (Gaucher disease type 1); GD 5 (Gaucher's disease); Genetic brain disorders; genetic emphysema (alpha-1 antitrypsin deficiency); genetic hemochromatosis (hemochromatosis); Giant cell hepatitis, neonatal (Neonatal hemochromatosis); GLA deficiency (Fabry disease); Glioblastoma, retinal (retinoblastoma); Glioma, retinal (retinoblastoma); globoid cell leukodystrophy (GCL, GLD) (Krabbe disease); globoid cell leukoencephalopathy (Krabbe disease); Glucocerebrosidase 10 deficiency (Gaucher disease); Glucocerebrosidosis (Gaucher disease); Glucosyl cerebroside lipidosis (Gaucher disease) ; Glucosylceramidase deficiency (Gaucher disease); Glucosylceramide beta-glucosidase deficiency (Gaucher disease); Glucosylceramide lipidosis (Gaucher disease); Glyceric aciduria (hyperoxaluria, primary); Glycine encephalopathy (Nonketotic hyperglycinemia); Glycolic aciduria (hyperoxaluria, primary); 15 GM2 gangliosidosis, type 1 (Tay-Sachs disease); Goiter-deafness syndrome (Pendred syndrome); Graefe-Usher syndrome (Usher syndrome); Gronblad-Strandberg syndrome (pseudoxanthoma elasticum); Guenther porphyria (congenital erythropoietic porphyria); Gunther disease (congenital erythropoietic porphyria); Haemochromatosis (hemochromatosis); Hallgren syndrome (Usher syndrome); Harlequin Ichthyosis; Hb S 20 disease (sickle cell anemia); HCH (hypochondroplasia); HCP (hereditary coproporphyria); Head and brain malformations; Hearing disorders and deafness; Hearing problems in children; HEF2A (hemochromatosis#type 2); HEF2B (hemochromatosis#type 2); Hematoporphyria (porphyria); Heme synthetase deficiency (erythropoietic protoporphyria); Hemochromatoses (hemochromatosis); hemochromatosis; hemoglobin M disease 25 (methemoglobinemia#beta-globin type); Hemoglobin S disease (sickle cell anemia); hemophilia; HEP (hepatoerythropoietic porphyria); hepatic AGT deficiency (hyperoxaluria, primary); hepatoerythropoietic porphyria; Hepatolenticular degeneration syndrome (Wilson disease); Hereditary arthro-ophthalmopathy (Stickler syndrome); Hereditary coproporphyria; Hereditary dystopic lipidosis (Fabry disease); Hereditary hemochromatosis (HHC) 30 (hemochromatosis); Hereditary Inclusion Body Myopathy (skeletal muscle regeneration); Hereditary iron-loading anemia (X-linked sideroblastic anemia); Hereditary motor and sensory neuropathy (Charcot-Marie-Tooth disease); Hereditary motor neuronopathy (spinal muscular atrophy); Hereditary motor neuronopathy, type V (distal spinal muscular atrophy, WO 2013/120629 PCT/EP2013/000461 73 type V); Hereditary Multiple Exostoses; Hereditary nonpolyposis colorectal cancer; Hereditary periodic fever syndrome (Mediterranean fever, familial); Hereditary Polyposis Coli (familial adenomatous polyposis); Hereditary pulmonary emphysema (alpha-1 antitrypsin deficiency); Hereditary resistance to activated protein C (factor V Leiden 5 thrombophilia); Hereditary sensory and autonomic neuropathy type IlIl (familial dysautonomia); Hereditary spastic paraplegia (infantile-onset ascending hereditary spastic paralysis); Hereditary spinal ataxia (Friedreich ataxia); Hereditary spinal sclerosis (Friedreich ataxia); Herrick's anemia (sickle cell anemia); Heterozygous OSMED (Weissenbacher Zweymtller syndrome); Heterozygous otospondylomegaepiphyseal dysplasia 10 (Weissenbacher-Zweymiiller syndrome); HexA deficiency (Tay-Sachs disease); Hexosaminidase A deficiency (Tay-Sachs disease); Hexosaminidase alpha-subunit deficiency (variant B) (Tay-Sachs disease); HFE-associated hemochromatosis (hemochromatosis); HGPS (Progeria); Hippel-Lindau disease (von Hippel-Lindau disease); HLAH (hemochromatosis); HMN V (distal spinal muscular atrophy, type V); HMSN 15 (Charcot-Marie-Tooth disease); HNPCC (hereditary nonpolyposis colorectal cancer); HNPP (hereditary neuropathy with liability to pressure palsies); homocystinuria; Homogentisic acid oxidase deficiency (alkaptonuria); Homogentisic acidura (alkaptonuria); Homozygous porphyria cutanea tarda (hepatoerythropoietic porphyria); HP1 (hyperoxaluria, primary); HP2 (hyperoxaluria, primary); HPA (hyperphenylalaninemia); HPRT - Hypoxanthine 20 guanine phosphoribosyltransferase deficiency (Lesch-Nyhan syndrome); HSAN type Ill (familial dysautonomia); HSAN3 (familial dysautonomia); HSN-1ll (familial dysautonomia); Human dermatosparaxis (Ehlers-Danlos syndrome#dermatosparaxis type); Huntington's disease; Hutchinson-Gilford progeria syndrome (progeria); Hyperandrogenism, nonclassic type, due to 21 -hydroxylase deficiency (21 -hydroxylase deficiency); 25 Hyperchylomicronemia, familial (lipoprotein lipase deficiency, familial); hyperglycinemia with ketoacidosis and leukopenia (propionic acidemia); Hyperlipoproteinemia type I (lipoprotein lipase deficiency, familial); hyperoxaluria, primary; hyperphenylalaninaemia (hyperphenylalaninemia); hyperphenylalaninemia; Hypochondrodysplasia (hypochondroplasia); hypochondrogenesis; hypochondroplasia; Hypochromic anemia (X 30 linked sideroblastic anemia); Hypocupremia, congenital; Menkes syndrome); hypoxanthine phosphoribosyltransferse (HPRT) deficiency (Lesch-Nyhan syndrome); IAHSP (infantile onset ascending hereditary spastic paralysis); idiopathic hemochromatosis (hemochromatosis, type 3); Idiopathic neonatal hemochromatosis (hemochromatosis, WO 2013/120629 PCT/EP2013/000461 74 neonatal); Idiopathic pulmonary hypertension (primary pulmonary hypertension); Immune system disorders (X-linked severe combined immunodeficiency); Incontinentia Pigmenti; Infantile cerebral Gaucher's disease (Gaucher disease type 2); Infantile Gaucher disease (Gaucher disease type 2); infantile-onset ascending hereditary spastic paralysis; Infertility; 5 inherited emphysema (alpha-1 antitrypsin deficiency); Inherited human transmissible spongiform encephalopathies (prion disease); inherited tendency to pressure palsies (hereditary neuropathy with liability to pressure palsies); Insley-Astley syndrome (otospondylomegaepiphyseal dysplasia); Intermittent acute porphyria syndrome (acute intermittent porphyria); Intestinal polyposis-cutaneous pigmentation syndrome (Peutz 10 Jeghers syndrome); IP (incontinentia pigmenti); Iron storage disorder (hemochromatosis); Isodicentric 15 (idic15); Isolated deafness (nonsyndromic deafness); Jackson-Weiss syndrome; JH (Haemochromatosis#type 2); Joubert syndrome; JPLS (Juvenile Primary Lateral Sclerosis); juvenile amyotrophic lateral sclerosis (Amyotrophic lateral sclerosis#type 2); Juvenile gout, choreoathetosis, mental retardation syndrome (Lesch-Nyhan syndrome); 15 juvenile hyperuricemia syndrome (Lesch-Nyhan syndrome); JWS (Jackson-Weiss syndrome); KD (X-linked spinal-bulbar muscle atrophy); Kennedy disease (X-inked spinal-bulbar muscle atrophy); Kennedy spinal and bulbar muscular atrophy (X-linked spinal-bulbar muscle atrophy); Kerasin histiocytosis (Gaucher disease); Kerasin lipoidosis (Gaucher disease); Kerasin thesaurismosis (Gaucher disease); ketotic glycinemia (propionic acidemia); 20 ketotic hyperglycinemia (propionic acidemia); Kidney diseases (hyperoxaluria, primary); Klinefelter syndrome; Klinefelter's syndrome; Kniest dysplasia; Krabbe disease; Lacunar dementia (CADASIL); Langer-Saldino achondrogenesis (achondrogenesis, type II); Langer Saldino dysplasia (achondrogenesis, type 11); Late-onset Alzheimer disease (Alzheimer disease#type 2); Late-onset familial Alzheimer disease (AD2) (Alzheimer disease#type 2); 25 late-onset Krabbe disease (LOKD) (Krabbe disease); Learning Disorders (Learning disability); Lentiginosis, perioral (Peutz-Jeghers syndrome); Lesch-Nyhan syndrome; Leukodystrophies; leukodystrophy with Rosenthal fibers (Alexander disease); Leukodystrophy, spongiform (Canavan disease); LFS (Li-Fraumeni syndrome); Li-Fraumeni syndrome; Lipase D deficiency (lipoprotein lipase deficiency, familial); LIPD deficiency (lipoprotein lipase deficiency, 30 familial); Lipidosis, cerebroside (Gaucher disease); Lipidosis, ganglioside, infantile (Tay Sachs disease); Lipoid histiocytosis (kerasin type) (Gaucher disease); lipoprotein lipase deficiency, familial; Liver diseases (galactosemia); Lou Gehrig disease (amyotrophic lateral sclerosis); Louis-Bar syndrome (ataxia-telangiectasia); Lynch syndrome (hereditary WO 2013/120629 PCT/EP2013/000461 75 nonpolyposis colorectal cancer); Lysyl-hydroxylase deficiency (Ehlers-Danlos syndrome#kyphoscol iosis type); Machado-Joseph disease (Spinocerebellar ataxia#type 3); Male breast cancer (breast cancer); Male genital disorders; Male Turner syndrome (Noonan syndrome); Malignant neoplasm of breast (breast cancer); malignant tumor of breast (breast 5 cancer); Malignant tumor of urinary bladder (bladder cancer); Mammary cancer (breast cancer); Marfan syndrome 15; Marker X syndrome (fragile X syndrome); Martin-Bell syndrome (fragile X syndrome); McCune-Albright syndrome; McLeod syndrome; MEDNIK; Mediterranean Anemia (beta thalassemia); Mediterranean fever, familial; Mega-epiphyseal dwarfism (otospondylomegaepiphyseal dysplasia); Menkea syndrome (Menkes syndrome); 10 Menkes syndrome; Mental retardation with osteocartilaginous abnormalities (Coffin-Lowry syndrome); Metabolic disorders; Metatropic dwarfism, type I (Kniest dysplasia); Metatropic dysplasia type 11 (Kniest dysplasia); Methemoglobinemia#beta-globin type; methylmalonic acidemia; MFS (Marfan syndrome); MHAM (Cowden syndrome); MK (Menkes syndrome); Micro syndrome; Microcephaly; MMA (methylmalonic acidemia); MNK (Menkes 15 syndrome); Monosomy 1p36 syndrome (1p36 deletion syndrome); monosomy X (Turner syndrome); Motor neuron disease, amyotrophic lateral sclerosis (amyotrophic lateral sclerosis); Movement disorders; Mowat-Wilson syndrome; Mucopolysaccharidosis (MPS 1); Mucoviscidosis (cystic fibrosis); Muenke syndrome; Multi-Infarct dementia (CADASIL); Multiple carboxylase deficiency, late-onset (biotinidase deficiency); Multiple hamartoma 20 syndrome (Cowden syndrome); Multiple neurofibromatosis (neurofibromatosis); Muscular dystrophy; Muscular dystrophy, Duchenne and Becker type; Myotonia atrophica (myotonic dystrophy); Myotonia dystrophica (myotonic dystrophy); myotonic dystrophy; Myxedema, congenital (congenital hypothyroidism); Nance-Insley syndrome (otospondylomegaepiphyseal dysplasia); Nance-Sweeney chondrodysplasia 25 (otospondylomegaepiphyseal dysplasia); NBIA1 (pantothenate kinase-associated neurodegeneration); Neill-Dingwall syndrome (Cockayne syndrome); Neuroblastoma, retinal (retinoblastoma); Neurodegeneration with brain iron accumulation type 1 (pantothenate kinase-associated neurodegeneration); Neurofibromatosis type I; Neurofibromatosis type 11; Neurologic diseases; Neuromuscular disorders; neuronopathy, 30 distal hereditary motor, type V (Distal spinal muscular atrophy#type V); neuronopathy, distal hereditary motor, with pyramidal features (Amyotrophic lateral sclerosis#type 4); NF (neurofibromatosis); Niemann-Pick (Niemann-Pick disease); Noack syndrome (Pfeiffer syndrome); Nonketotic hyperglycinemia (Glycine encephalopathy); Non-neuronopathic WO 2013/120629 PCT/EP2013/000461 76 Gaucher disease (Gaucher disease type 1); Non-phenylketonuric hyperphenylalaninemia (tetrahydrobiopterin deficiency); nonsyndromic deafness; Noonan syndrome; Norrbottnian Gaucher disease (Gaucher disease type 3); Ochronosis (alkaptonuria); Ochronotic arthritis (alkaptonuria); 01 (osteogenesis imperfecta); OSMED (otospondylomegaepiphyseal 5 dysplasia); osteogenesis imperfecta; Osteopsathyrosis (osteogenesis imperfecta); Osteosclerosis congenita (achondroplasia); Oto-spondylo-megaepiphyseal dysplasia (otospondylomegaepiphyseal dysplasia); otospondylomegaepiphyseal dysplasia; Oxalosis (hyperoxaluria, primary); Oxaluria, primary (hyperoxaluria, primary); pantothenate kinase associated neurodegeneration; Patau Syndrome (Trisomy 13); PBGD deficiency (acute 10 intermittent porphyria); PCC deficiency (propionic acidemia); PCT (porphyria cutanea tarda); PDM (Myotonic dystrophy#type 2); Pendred syndrome; Periodic disease (Mediterranean fever, familial); Periodic peritonitis (Mediterranean fever, familial); Periorificial lentiginosis syndrome (Peutz-Jeghers syndrome); Peripheral nerve disorders (familial dysautonomia); Peripheral neurofibromatosis (neurofibromatosis 1); Peroneal 15 muscular atrophy (Charcot-Marie-Tooth disease); peroxisomal alanine:glyoxylate aminotransferase deficiency (hyperoxaluria, primary); Peutz-Jeghers syndrome; Pfeiffer syndrome; Phenylalanine hydroxylase deficiency disease (phenylketonuria); phenylketonuria; Pheochromocytoma (von Hippel-Lindau disease); Pierre Robin syndrome with fetal chondrodysplasia (Weissenbacher-Zweymbiler syndrome); Pigmentary cirrhosis 20 (hemochromatosis); PJS (Peutz-Jeghers syndrome); PKAN (pantothenate kinase-associated neurodegeneration); PKU (phenylketonuria); Plumboporphyria (ALA deficiency porphyria); PMA (Charcot-Marie-tooth disease); polyostotic fibrous dysplasia (McCune-Albright syndrome); polyposis coli (familial adenomatous polyposis); polyposis, hamartomatous intestinal (Peutz-Jeghers syndrome); polyposis, intestinal, Il (Peutz-Jeghers syndrome); 25 polyps-and-spots syndrome (Peutz-Jeghers syndrome); Porphobilinogen synthase deficiency (ALA deficiency porphyria); porphyria; porphyrin disorder (porphyria); PPH (primary pulmonary hypertension); PPOX deficiency (variegate porphyria); Prader-Labhart-Willi syndrome (Prader-Willi syndrome); Prader-Willi syndrome; presenile and senile dementia (Alzheimer disease); primary hemochromatosis (hemochromatosis); primary hyperuricemia 30 syndrome (Lesch-Nyhan syndrome); primary pulmonary hypertension; primary senile degenerative dementia (Alzheimer disease); prion disease; procollagen type EDS VII, mutant (Ehlers-Danlos syndrome#arthrochalasia type); progeria (Hutchinson Gilford Progeria Syndrome); Progeria-like syndrome (Cockayne syndrome); progeroid nanism (Cockayne WO 2013/120629 PCT/EP2013/000461 77 syndrome); progressive chorea, chronic hereditary (Huntington) (Huntington's disease); progressive muscular atrophy (spinal muscular atrophy); progressively deforming osteogenesis imperfecta with normal sclerae (Osteogenesis imperfectaftype Ill); PROMM (Myotonic dystrophy#type 2); propionic academia; propionyl-CoA carboxylase deficiency 5 (propionic acidemia); protein C deficiency; protein S deficiency; protoporphyria (erythropoietic protoporphyria); protoporphyrinogen oxidase deficiency (variegate porphyria); proximal myotonic dystrophy (Myotonic dystrophy#type 2); proximal myotonic myopathy (Myotonic dystrophy#type 2); pseudo-Gaucher disease; pseudo-Ullrich-Turner syndrome (Noonan syndrome); pseudoxanthoma elasticum; psychosine lipidosis (Krabbe 10 disease); pulmonary arterial hypertension (primary pulmonary hypertension); pulmonary hypertension (primary pulmonary hypertension); PWS (Prader-Willi syndrome); PXE pseudoxanthoma elasticum (pseudoxanthoma elasticum); Rb (retinoblastoma); Recklinghausen disease, nerve (neurofibromatosis 1); Recurrent polyserositis (Mediterranean fever, familial); Retinal disorders; Retinitis pigmentosa-deafness syndrome (Usher 15 syndrome); Retinoblastoma; Rett syndrome; RFALS type 3 (Amyotrophic lateral sclerosis#type 2); Ricker syndrome (Myotonic dystrophy#type 2); Riley-Day syndrome (familial dysautonomia); Roussy-Levy syndrome (Charcot-Marie-Tooth disease); RSTS (Rubinstein-Taybi syndrome); RTS (Rett syndrome) (Rubinstein-Taybi syndrome); RTT (Rett syndrome); Rubinstein-Taybi syndrome; Sack-Barabas syndrome (Ehlers-Danlos syndrome, 20 vascular type); SADDAN; sarcoma family syndrome of Li and Fraumeni (Li-Fraumeni syndrome); sarcoma, breast, leukemia, and adrenal gland (SBLA) syndrome (Li-Fraumeni syndrome); SBLA syndrome (Li-Fraumeni syndrome); SBMA (X-linked spinal-bulbar muscle atrophy); SCD (sickle cell anemia); Schwannoma, acoustic, bilateral (neurofibromatosis 2); SCIDX1 (X-linked severe combined immunodeficiency); sclerosis tuberosa (tuberous 25 sclerosis); SDAT (Alzheimer disease); SED congenita (spondyloepiphyseal dysplasia congenita); SED Strudwick (spondyloepimetaphyseal dysplasia, Strudwick type); SEDc (spondyloepiphyseal dysplasia congenita); SEMD, Strudwick type (spondyloepimetaphyseal dysplasia, Strudwick type); senile dementia (Alzheimer disease#type 2); severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN); Shprintzen 30 syndrome (22q 1.2 deletion syndrome); sickle cell anemia; skeleton-skin-brain syndrome (SADDAN); Skin pigmentation disorders; SMA (spinal muscular atrophy); SMED, Strudwick type (spondyloepimetaphyseal dysplasia, Strudwick type); SMED, type I (spondyloepimetaphyseal dysplasia, Strudwick type); Smith Lemli Opitz Syndrome; South- WO 2013/120629 PCT/EP2013/000461 78 African genetic porphyria (variegate porphyria); spastic paralysis, infantile onset ascending (infantile-onset ascending hereditary spastic paralysis); Speech and communication disorders; sphingolipidosis, Tay-Sachs (Tay-Sachs disease); spinal-bulbar muscular atrophy; spinal muscular atrophy; spinal muscular atrophy, distal type V (Distal spinal muscular 5 atrophy#type V); spinal muscular atrophy, distal, with upper limb predominance (Distal spinal muscular atrophy#type V); spinocerebellar ataxia; spondyloepimetaphyseal dysplasia, Strudwick type; spondyloepiphyseal dysplasia congenital; spondyloepiphyseal dysplasia (collagenopathy, types I and XI); spondylometaepiphyseal dysplasia congenita, Strudwick type (spondyloepimetaphyseal dysplasia, Strudwick type); spondylometaphyseal dysplasia 10 (SMD) (spondyloepimetaphyseal dysplasia, Strudwick type); spondylometaphyseal dysplasia, Strudwick type (spondyloepimetaphyseal dysplasia, Strudwick type); spongy degeneration of central nervous system (Canavan disease); spongy degeneration of the brain (Canavan disease); spongy degeneration of white matter in infancy (Canavan disease); sporadic primary pulmonary hypertension (primary pulmonary hypertension); SSB syndrome 15 (SADDAN); steely hair syndrome (Menkes syndrome); Steinert disease (myotonic dystrophy); Steinert myotonic dystrophy syndrome (myotonic dystrophy); Stickler syndrome; stroke (CADASIL); Strudwick syndrome (spondyloepimetaphyseal dysplasia, Strudwick type); subacute neuronopathic Gaucher disease (Gaucher disease type 3); Swedish genetic porphyria (acute intermittent porphyria); Swedish porphyria (acute intermittent porphyria); 20 Swiss cheese cartilage dysplasia (Kniest dysplasia); Tay-Sachs disease; TD - thanatophoric dwarfism (thanatophoric dysplasia); TD with straight femurs and cloverleaf skull (thanatophoric dysplasia#Type 2); Telangiectasia, cerebello-oculocutaneous (ataxia telangiectasia); Testicular feminization syndrome (androgen insensitivity syndrome); tetrahydrobiopterin deficiency; TFM - testicular feminization syndrome (androgen 25 insensitivity syndrome); thalassemia intermedia (beta thalassemia); Thalassemia Major (beta thalassemia); thanatophoric dysplasia; thiamine-responsive megaloblastic anemia with diabetes mellitus and sensorineural deafness; Thrombophilia due to deficiency of cofactor for activated protein C, Leiden type (factor V Leiden thrombophilia); Thyroid disease; Tomaculous neuropathy (hereditary neuropathy with liability to pressure palsies); Total 30 HPRT deficiency (Lesch-Nyhan syndrome); Total hypoxanthine-guanine phosphoribosyl transferase deficiency (Lesch-Nyhan syndrome); Tourette's Syndrome; Transmissible dementias (prion disease); Transmissible spongiform encephalopathies (prion disease); Treacher Collins syndrome; Trias fragilitis ossium (osteogenesis imperfecta#Type 1); triple X WO 2013/120629 PCT/EP2013/000461 79 syndrome; Triplo X syndrome (triple X syndrome); Trisomy 21 (Down syndrome); Trisomy X (triple X syndrome); Troisier-Hanot-Chauffard syndrome (hemochromatosis); TS (Turner syndrome); TSD (Tay-Sachs disease); TSEs (prion disease); tuberose sclerosis (tuberous sclerosis); tuberous sclerosis; Turner syndrome; Turner syndrome in female with X 5 chromosome (Noonan syndrome); Turner's phenotype, karyotype normal (Noonan syndrome); Turner's syndrome (Turner syndrome); Turner-like syndrome (Noonan syndrome); Type 2 Gaucher disease (Gaucher disease type 2); Type 3 Gaucher disease (Gaucher disease type 3); UDP-galactose-4-epimerase deficiency disease (galactosemia); UDP glucose 4-epimerase deficiency disease (galactosemia); UDP glucose hexose-1 10 phosphate uridylyltransferase deficiency (galactosemia); Ullrich-Noonan syndrome (Noonan syndrome); Ullrich-Turner syndrome (Turner syndrome); Undifferentiated deafness (nonsyndromic deafness); UPS deficiency (acute intermittent porphyria); Urinary bladder cancer (bladder cancer); UROD deficiency (porphyria cutanea tarda); Uroporphyrinogen decarboxylase deficiency (porphyria cutanea tarda); Uroporphyrinogen synthase deficiency 15 (acute intermittent porphyria); UROS deficiency (congenital erythropoietic porphyria); Usher syndrome; UTP hexose-1 -phosphate uridylyltransferase deficiency (galactosemia); Van Bogaert-Bertrand syndrome (Canavan disease); Van der Hoeve syndrome (osteogenesis imperfecta#Type I); variegate porphyria; Velocardiofacial syndrome (22q 1.2 deletion syndrome); VHL syndrome (von Hippel-Lindau disease); Vision impairment and blindness 20 (Alstrom syndrome); Von Bogaert-Bertrand disease (Canavan disease); von Hippel-Lindau disease; Von Recklenhausen-Applebaum disease (hemochromatosis); von Recklinghausen disease (neurofibromatosis 1); VP (variegate porphyria); Vrolik disease (osteogenesis imperfecta); Waardenburg syndrome; Warburg Sjo Fledelius Syndrome (Micro syndrome); WD (Wilson disease); Weissenbacher-Zweymt I ler syndrome; Wilson disease; Wilson's 25 disease (Wilson disease); Wolf-Hirschhorn syndrome; Wolff Periodic disease (Mediterranean fever, familial); WZS (Weissenbacher-Zweyma ller syndrome); Xeroderma Pigmentosum; X-linked mental retardation and macroorchidism (fragile X syndrome); X linked primary hyperuricemia (Lesch-Nyhan syndrome); X-linked severe combined immunodeficiency; X-linked sideroblastic anemia; X-linked spinal-bulbar muscle atrophy 30 (Kennedy disease); X-linked uric aciduria enzyme defect (Lesch-Nyhan syndrome); X-SCID (X-linked severe combined immunodeficiency); XLSA (X-linked sideroblastic anemia); XSCID (X-linked severe combined immunodeficiency); XXX syndrome (triple X syndrome); XXXX syndrome (48, XXXX); XXXXX syndrome (49, XXXXX); XXY syndrome (Klinefelter WO 2013/120629 PCT/EP2013/000461 80 syndrome); XXY trisomy (Klinefelter syndrome); XYY karyotype (47,XYY syndrome); XYY syndrome (47,XYY syndrome); and YY syndrome (47,XYY syndrome). In a further preferred aspect, the inventive nucleic acid sequence as defined herein or the 5 inventive composition comprising a plurality of inventive nucleic acid sequences as defined herein may be used for the preparation of a pharmaceutical composition, particularly for purposes as defined herein, preferably for the use in gene therapy in the treatment of diseases as defined herein. 10 The inventive pharmaceutical composition may furthermore be used in gene therapy particularly in the treatment of a disease or a disorder, preferably as defined herein. According to a final aspect, the present invention also provides kits, particularly kits of parts. Such kits, particularly kits of parts, typically comprise as components alone or in 15 combination with further components as defined herein at least one inventive nucleic acid sequence as defined herein, the inventive pharmaceutical composition or vaccine comprising the inventive nucleic acid sequence. The at least one inventive nucleic acid sequence as defined herein, is optionally in combination with further components as defined herein, whereby the at least one nucleic acid of the invention is provided separately 20 (first part of the kit) from at least one other part of the kit comprising one or more other components. The inventive pharmaceutical composition may e.g. occur in one or different parts of the kit. As an example, e.g. at least one part of the kit may comprise at least one inventive nucleic acid sequence as defined herein, and at least one further part of the kit at least one other component as defined herein, e.g. at least one other part of the kit may 25 comprise at least one pharmaceutical composition or a part thereof, e.g. at least one part of the kit may comprise the inventive nucleic acid sequence as defined herein, at least one further part of the kit at least one other component as defined herein, at least one further part of the kit at least one component of the inventive pharmaceutical composition or the inventive pharmaceutical composition as a whole, and at least one further part of the kit e.g. 30 at least one pharmaceutical carrier or vehicle, etc. In case the kit or kit of parts comprises a plurality of inventive nucleic acid sequences, one component of the kit can comprise only one, several or all inventive nucleic acid sequences comprised in the kit. In an alternative embodiment every/each inventive nucleic acid sequence may be comprised in a different/separate component of the kit such that each component forms a part of the kit. WO 2013/120629 PCT/EP2013/000461 81 Also, more than one nucleic acid may be comprised in a first component as part of the kit, whereas one or more other (second, third etc.) components (providing one or more other parts of the kit) may either contain one or more than one inventive nucleic acids, which may be identical or partially identical or different from the first component. The kit or kit of 5 parts may furthermore contain technical instructions with information on the administration and dosage of the inventive nucleic acid sequence, the inventive pharmaceutical composition or of any of its components or parts, e.g. if the kit is prepared as a kit of parts. Taken together, the invention provides nucleic acid sequence comprising or coding for 10 a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, may be a therapeutic protein, 15 preferably a therapeutic protein for use in the treatment of metabolic or endocrine disorders, for use in the treatment of blood disorders, diseases of the circulatory system, diseases of the respiratory system, cancer or tumour diseases, infectious diseases or immunedeficiencies, for use in hormone replacement therapy or for use in reprogramming of somatic cells 20 or a therapeutic protein selected from from adjuvant or immunostimulating proteins, human adjuvant proteins, bacterial (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, fungal (adjuvant) proteins or an antibody, preferably an antibody selected from antibodies used for the treatment of cancer or tumour diseases, antibodies used for the treatment of immune 25 disorders, antibodies used for the treatment of infectious diseases, antibodies used for the treatment of infectious diseases, antibodies used for the treatment of blood disorders, antibodies used for immunoregulation, antibodies used for the treatment of diabetes, antibodies used for the treatment of the Alzheimer's disease, antibodies used for the treatment of asthma or antibodies for the treatment of diverse disorders. 30 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the WO 2013/120629 PCT/EP2013/000461 82 invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a 5 cell, a tissue or an organism. Preferably, the invention provides a nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; 10 b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, may be a therapeutic protein for use in the treatment of metabolic or endocrine disorders, 15 for use in the treatment of blood disorders, diseases of the circulatory system, diseases of the respiratory system, cancer or tumour diseases, infectious diseases or immunedeficiencies, for use in hormone replacement therapy or for use in reprogramming of somatic cells. 20 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or 25 protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 30 Further preferably, the invention provides a nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and WO 2013/120629 PCT/EP2013/000461 83 c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein selected from adjuvant or immunostimulating proteins, more preferably selected from human adjuvant 5 proteins, bacterial (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, fungal (adjuvant) proteins. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a 10 pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a 15 cell, a tissue or an organism. Further preferably, the invention provides a nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and 20 c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein or a fragment, variant or derivative thereof which is a therapeutic antibody, more preferably an antibody selected from antibodies used for the treatment of cancer or tumour diseases, 25 antibodies used for the treatment of immune disorders, antibodies used for the treatment of infectious diseases, antibodies used for the treatment of infectious diseases, antibodies used for the treatment of blood disorders, antibodies used for immunoregulation, antibodies used for the treatment of diabetes, antibodies used for the treatment of the Alzheimer's disease, antibodies used for the treatment of asthma 30 or antibodies for the treatment of diverse disorders. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a WO 2013/120629 PCT/EP2013/000461 84 pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering 5 the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. Preferably the invention provides a nucleic acid sequence comprising or coding for 10 a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein for use in the 15 treatment of metabolic or endocrine disorders, more preferably a peptide or protein selected from Acid sphingomyelinase, Adipotide, Agalsidase-beta, Alglucosidase, alpha-galactosidase A, alpha glucosidase, alpha-L-iduronidase, alpha-N-acetylglucosaminidase, Amphiregulin, Angiopoietins (Ang1, Ang2, Ang3, Ang4, ANGPTL2, 20 ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, ANGPTL7), Betacellulin, Beta glucuronidase, Bone morphogenetic proteins BMPs (BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP1 0, BMP1 5), CLN6 protein, Epidermal growth factor (EGF), Epigen, Epiregulin, Fibroblast Growth Factor (FGF, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, 25 FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, FGF-16, FGF-17, FGF-17, FGF-18, FGF-19, FGF-20, FGF-21, FGF-22, FGF-23), Galsulphase, Ghrelin, Glucocerebrosidase, GM-CSF, Heparin-binding EGF-like growth factor (HB EGF), Hepatocyte growth factor HGF, Hepcidin, Human albumin, increased loss of albumin, ldursulphase (iduronate-2-sulphatase), Integrins aVp3, aV05 30 and a5p1, l uduronate sulfatase, Laronidase, N-acetylgalactosamine-4 sulfatase (rhASB; galsulfase, Arylsulfatase A (ARSA), Arylsulfatase B (ARSB)), N-acetylglucosamine-6-sulfatase, Nerve growth factor (NGF, Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin 4/5 WO 2013/120629 PCT/EP2013/000461 85 (NT-4/5), Neuregulin (NRG1, NRG2, NRG3, NRG4), Neuropilin (NRP-1, NRP-2), Obestatin, Platelet Derived Growth factor (PDGF (PDFF-A, PDGF-B, PDGF-C, PDGF-D), TGF beta receptors (endoglin, TGF-beta 1 receptor, TGF beta 2 receptor, TGF-beta 3 receptor), Thrombopoietin (THPO) 5 (Megakaryocyte growth and development factor (MGDF)), Transforming Growth factor (TGF (TGF-a, TGF-beta (TGFbetal, TGFbeta2, and TGFbeta3))), VEGF (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F und PIGF), Nesiritide, Trypsin, adrenocorticotrophic hormone (ACTH), Atrial-natriuretic peptide (ANP), Cholecystokinin, Gastrin, Leptin, Oxytocin, 10 Somatostatin, Vasopressin (antidiuretic hormone), Calcitonin, Exenatide, Growth hormone (GH), somatotropin, Insulin, Insulin-like growth factor 1 IGF-1, Mecasermin rinfabate, IGF-1 analog, Mecasermin, IGF-1 analog, Pegvisomant, Pramlintide, Teriparatide (human parathyroid hormone residues 1-34), Becaplermin, Dibotermin-alpha (Bone morphogenetic 15 protein 2), Histrelin acetate (gonadotropin releasing hormone; GnRH), Octreotide, and Palifermin (keratinocyte growth factor; KGF). The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic 20 acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free 25 expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and 30 c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein for use in the treatment of blood disorders, diseases of the circulatory system, diseases of the WO 2013/120629 PCT/EP2013/000461 86 respiratory system, cancer or tumour diseases, infectious diseases or immunedeficiencies, more preferably a peptide or protein selected from Alteplase (tissue plasminogen activator; tPA), Anistreplase, Antithrombin IlIl (AT-Ill), Bivalirudin, Darbepoetin-alpha, Drotrecogin-alpha (activated protein 5 C, Erythropoietin, Epoetin-alpha, erythropoetin, erthropoyetin, Factor IX, Factor Vila, Factor Vill, Lepirudin, Protein C concentrate, Reteplase (deletion mutein of tPA), Streptokinase, Tenecteplase, Urokinase, Angiostatin, Anti-CD22 immunotoxin, Denileukin diftitox, Immunocyanin, MPS (Metallopanstimulin), Aflibercept, Endostatin, Collagenase, Human deoxy-ribonuclease I, dornase, 10 Hyaluronidase, Papain, L-Asparaginase, Peg-asparaginase, Rasburicase, Human chorionic gonadotropin (HCG), Human follicle-stimulating hormone (FSH), Lutropin-alpha, Prolactin, alpha-1-Proteinase inhibitor, Lactase, Pancreatic enzymes (lipase, amylase, protease), Adenosine deaminase (pegademase bovine, PEG-ADA), Abatacept, Alefacept, Anakinra, Etanercept, Interleukin-1 15 (IL-1) receptor antagonist, Anakinra, Thymulin, TNF-alpha antagonist, Enfuvirtide, and Thymosin al. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic 20 acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free 25 expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and 30 c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein used for hormone WO 2013/120629 PCT/EP2013/000461 87 replacement therapy, more preferably a peptide or protein selected from oestrogens, progesterone or progestins, and testosterone. The invention further provides the use of such a nucleic acid sequence in gene therapy as 5 defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and 10 applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism.Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and 15 c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein used for reprogramming of somatic cells into pluri- or omnipotent stem cells, more preferably a peptide or protein selected from Oct-3/4, Sox gene family (Sox1, 20 Sox2, Sox3, and SoxI 5), KIf family (KIf1, Klf2, Klf4, and Klf5), Myc family (c myc, L-myc, and N-myc), Nanog, and LIN28. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic 25 acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free 30 expression system, a cell, a tissue or an organism.Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and WO 2013/120629 PCT/EP2013/000461 88 c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein selected from adjuvant or immunostimulating proteins, human adjuvant proteins, bacterial 5 (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, fungal (adjuvant) proteins. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising 10 such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 15 Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; 20 wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein selected from adjuvant or immunostimulating proteins, human adjuvant proteins, bacterial (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, fungal (adjuvant) proteins, more preferably selected from human adjuvant 25 proteins, most preferably selected from pattern recognition receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR1 0, TLR1 1; NOD1, NOD2, NOD3, NOD4, NOD5, NALP1, NALP2, NALP3, NALP4, NALP5, NALP6, NALP6, NALP7, NALP7, NALP8, NALP9, NALP1 0, NALP1 1, NALP1 2, NALP13, NALP14,1 IPAF, NAIP, CIITA, RIG-1, MDA5 and LGP2, the signal 30 transducers of TLR signaling including adaptor proteins including e.g. Trif and Cardif; components of the Small-GTPases signalling (RhoA, Ras, Rac1, Cdc42, Rab etc.), components of the PIP signalling (P13K, Src-Kinases, etc.), components of the MyD88-dependent signalling (MyD88, IRAKI, IRAK2, WO 2013/120629 PCT/EP2013/000461 89 IRAK4, TIRAP, TRAF6 etc.), components of the MyD88-independent signalling (TICAM1, TICAM2, TRAF6, TBK1, IRF3, TAK1, IRAK1 etc.); the activated kinases including e.g. Akt, MEKK1, MKK1, MKK3, MKK4, MKK6, MKK7, ERK1, ERK2, GSK3, PKC kinases, PKD kinases, GSK3 kinases, JNK, p38MAPK, TAK1, 5 IKK, and TAK1; the activated transcription factors including e.g. NF-cB, c-Fos, c-Jun, c-Myc, CREB, AP-1, Elk-1, ATF2, IRF-3, IRF-7, heat shock proteins, such as HSP10, HSP60, HSP65, HSP70, HSP75 and HSP90, gp96, Fibrinogen, Typill repeat extra domain A of fibronectin; or components of the complement system including C1q, MBL, C1r, C1s, C2b, Bb, D, MASP-1, MASP-2, C4b, C3b, C5a, 10 C3a, C4a, C5b, C6, C7, C8, C9, CR1, CR2, CR3, CR4, C1qR, C1INH, C4bp, MCP, DAF, H, I, P and CD59, or induced target genes including e.g. Beta Defensin, cell surface proteins; or human adjuvant proteins including trif, flt-3 ligand, Gp96 or fibronectin, cytokines which induce or enhance an innate immune response, including IL-1 alpha, IL1 beta, IL-2, IL-6, IL-7, IL-8, IL-9, IL 15 12, IL-13, IL-15, IL-16, IL-17, IL-18, IL-21, IL-23, TNFalpha, IFNalpha, IFNbeta, IFNgamma, GM-CSF, G-CSF, M-CSF; chemokines including IL-8, IP-10, MCP 1, MIP-lalpha, RANTES, Eotaxin, CCL21; cytokines which are released from macrophages, including IL-1, IL-6, IL-8, IL-12 and TNF-alpha; as well as IL-1R1 and IL-1 alpha. 20 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a 25 nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for 30 a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; WO 2013/120629 PCT/EP2013/000461 90 wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein selected from adjuvant or immunostimulating proteins, human adjuvant proteins, bacterial (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, 5 fungal (adjuvant) proteins, more preferably selected from bacterial (adjuvant) proteins, most preferably selected from bacterial heat shock proteins or chaperons, including Hsp60, Hsp70, Hsp90, Hsp100; OmpA (Outer membrane protein) from gram-negative bacteria; bacterial porins, including OmpF; bacterial toxins, including pertussis toxin (PT) from Bordetella pertussis, 10 pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, PT 9K/129G mutant from pertussis toxin, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, tetanus toxin, cholera toxin (CT), cholera toxin B-subunit, CTK63 mutant from cholera toxin, CTE1 12K mutant from CT, Escherichia co/i heat-labile enterotoxin (LT), B subunit from heat-labile 15 enterotoxin (LTB) Escherichia co/iheat-labile enterotoxin mutants with reduced toxicity, including LTK63, LTR72; phenol-soluble modulin; neutrophil activating protein (HP-NAP) from He/icobacter py/ori Surfactant protein D; Outer surface protein A lipoprotein from Borrelia burgdorferi, Ag38 (38 kDa antigen) from Mycobacterium tuberculosis; proteins from bacterial fimbriae; 20 Enterotoxin CT of Vibrio cholerae, Pilin from pili from gram negative bacteria, and Surfactant protein A and bacterial flagellins. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic 25 acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free 30 expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; WO 2013/120629 PCT/EP2013/000461 91 b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein selected from 5 adjuvant or immunostimulating proteins, human adjuvant proteins, bacterial (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, fungal (adjuvant) proteins, more preferably selected from protozoan (adjuvant) proteins, most preferably selected from Tc52 from Trypanosoma cruzi, PFTG from Trypanosoma gondii, Protozoan heat shock proteins, LeIF from 10 Leishmania spp., profiling-like protein from Toxoplasma gondii. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising 15 such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 20 Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; 25 wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein selected from adjuvant or immunostimulating proteins, human adjuvant proteins, bacterial (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, fungal (adjuvant) proteins, more preferably selected from viral (adjuvant) 30 proteins, most preferably selected from Respiratory Syncytial Virus fusion glycoprotein (F-protein), envelope protein from MMT virus, mouse leukemia virus protein, Hemagglutinin protein of wild-type measles virus. WO 2013/120629 PCT/EP2013/000461 92 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the 5 expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 10 Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, 15 variant or derivative thereof, preferably a therapeutic protein selected from adjuvant or immunostimulating proteins, human adjuvant proteins, bacterial (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, fungal (adjuvant) proteins, more preferably selected from fungal (adjuvant) proteins, most preferably selected from fungal immunomodulatory protein (FIP; 20 LZ-8); and Keyhole limpet hemocyanin (KLH), OspA. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising 25 such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism.Preferably the invention provides nucleic 30 acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; WO 2013/120629 PCT/EP2013/000461 93 wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of cancer or tumour diseases, preferably 1311 tositumomab, 3F8, 8H9, Abagovomab, Adecatumumab, Afutuzumab, Alacizumab 5 pegol, Alemtuzumab, Amatuximab, AME-133v, AMG 102, Anatumomab mafenatox, Apolizumab, Bavituximab, Bectumomab, Belimumab, Bevacizumab, Bivatuzumab mertansine, Blinatumomab, Brentuximab vedotin, Cantuzumab, Cantuzumab mertansine, Cantuzumab ravtansine, Capromab pendetide, Carlumab, Catumaxomab, Cetuximab, Citatuzumab bogatox, Cixutumumab, Clivatuzumab 10 tetraxetan, CNTO 328, CNTO 95, Conatumumab, Dacetuzumab, Dalotuzumab, Denosumab, Detumomab, Drozitumab, Ecromeximab, Edrecolomab, Elotuzumab, Elsilimomab, Enavatuzumab, Ensituximab, Epratuzumab, Ertumaxomab, Ertumaxomab, Etaracizumab, Farletuzumab, FBTA05, Ficlatuzumab, Figitumumab, Flanvotumab, Galiximab, Galiximab, Ganitumab, GC1008, Gemtuzumab, 15 Gemtuzumab ozogamicin, Girentuximab, Glembatumumab vedotin, GS6624, HuC242-DM4, HuHMFG1, HuN901-DM1, lbritumomab, Icrucumab, ID09C3, Indatuximab ravtansine, Inotuzumab ozogamicin, Intetumumab, Ipilimumab, Iratumumab, Labetuzumab, Lexatumumab, Lintuzumab, Lorvotuzumab mertansine, Lucatumumab, Lumiliximab, Mapatumumab, Matuzumab, MDX-060, MEDI 522, 20 Mitumomab, Mogamulizumab, MORab-003, MORab-009, Moxetumomab pasudotox, MT103, Nacolomab tafenatox, Naptumomab estafenatox, Narnaturmab, Necitumumab, Nimotuzumab, Nimotuzumab, Olaratumab, Onartuzumab, Oportuzumab monatox, Oregovomab, Oregovomab, PAM4, Panitumumab, Patritumab, Pemtumomab, Pertuzumab, Pritumumab, Racotumomab, Radretumab, 25 Ramucirumab, Rilotumumab, Rituximab, Robatumumab, Samalizumab, SGN-30, SGN-40, Sibrotuzumab, Siltuximab, Tabalumab, Tacatuzumab tetraxetan, Taplitumomab paptox, Tenatumomab, Teprotumumab, TGN1412, Ticilimumab (= tremelimumab), Tigatuzumab, TNX-650, Tositumomab, Trastuzumab, TRBS07, Tremelimumab, TRU-016, TRU-016, Tucotuzumab celmoleukin, Ublituximab, 30 Urelumab, Veltuzumab, Veltuzumab (IMMU-106), Volociximab, Votumumab, WX G250, Zalutumumab, and Zanolimumab. WO 2013/120629 PCT/EP2013/000461 94 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the 5 expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 10 Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and .c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, 15 variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of immune disorders, preferably selected from Efalizumab, Epratuzumab, Etrolizumab, Fontolizumab, Ixekizumab, Mepolizumab, Milatuzumab, Pooled immunoglobulins, Priliximab, Rituximab, Rontalizumab, Ruplizumab, Sarilumab, Vedolizumab, Visilizumab, Reslizumab, Adalimumab, 20 Aselizumab, Atinumab, Atlizumab, Bertilimumab, Besilesomab, BMS-945429, Briakinumab, Brodalumab, Canakinumab, Canakinumab, Certolizumab pegol, Erlizumab, Fezakinumab, Golimumab, Gomiliximab, Infliximab, Mavrilimumab, Natalizumab, Ocrelizumab, Odulimomab, Ofatumumab, Ozoralizumab, Pexelizumab, Rovelizumab, SBI-087, SBI-087, Secukinumab, Sirukumab, 25 Talizumab, Tocilizumab, Toralizumab, TRU-015, TRU-016, Ustekinumab, Ustekinumab, Vepalimomab, Zolimomab aritox, Sifalimumab, Lumiliximab, and Rho(D) Immune Globulin. The invention further provides the use of such a nucleic acid sequence in gene therapy as 30 defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a WO 2013/120629 PCT/EP2013/000461 95 nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 5 Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, 10 variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of cancer or tumour diseases, preferably antibodies used for the treatment of infectious diseases, particularly Afelimomab, CR6261, Edobacomab, Efungumab, Exbivirumab, Felvizumab, Foravirumab, Ibalizumab, Libivirumab, Motavizumab, Nebacumab, Tuvirumab, Urtoxazumab, Bavituximab, 15 Pagibaximab, Palivizumab, Panobacumab, PRO 140, Rafivirumab, Raxibacumab, Regavirumab, Sevirumab, Suvizumab, and Tefibazumab. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic 20 acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free 25 expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and 30 c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of cancer or tumour diseases, preferably antibodies WO 2013/120629 PCT/EP2013/000461 96 used for the treatment of blood disorders, particularly Abciximab, Atorolimumab, Eculizumab, Mepolizumab, and Milatuzumab. The invention further provides the use of such a nucleic acid sequence in gene therapy as 5 defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and 10 applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; 15 b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of cancer or tumour diseases, preferably antibodies 20 used for immunoregulation, particularly Antithymocyte globulin, Basiliximab, Cedelizumab, Daclizumab, Gavilimomab, Inolimomab, Muromonab-CD3, Muromonab-CD3, Odulimomab, and Siplizumab. The invention further provides the use of such a nucleic acid sequence in gene therapy as 25 defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and 30 applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for WO 2013/120629 PCT/EP2013/000461 97 a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, 5 variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of cancer or tumour diseases, preferably antibodies used for the treatment of diabetes, particularly Gevokizumab, Otelixizumab, and Teplizumab. 10 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a 15 nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for 20 a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic antibody selected from 25 antibodies used for the treatment of cancer or tumour diseases, preferably antibodies used for the treatment of the Alzheimer's disease, particularly Bapineuzumab, Crenezumab, Gantenerumab, Ponezumab, R1450, and Solanezumab. The invention further provides the use of such a nucleic acid sequence in gene therapy as 30 defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a WO 2013/120629 PCT/EP2013/000461 98 nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 5 Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, 10 variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of cancer or tumour diseases, preferably antibodies used for the treatment of asthma, particularly Benralizumab, Enokizumab, Keliximab, Lebrikizumab, Omalizumab, Oxelumab, Pascolizumab, and Tralokinumab. 15 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the 20 expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 25 Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, 30 variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of cancer or tumour diseases, preferably antibodies for the treatment of diverse disorders, particularly Blosozumab, CaroRx, WO 2013/120629 PCT/EP2013/000461 99 Fresolimumab, Fulranumab, Romosozumab, Stamulumab, Tanezumab, and Ranibizumab. The invention further provides the use of such a nucleic acid sequence in gene therapy as 5 defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and 10 applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. Preferably, the invention provides a nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; 15 b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, may be a therapeutic protein for use in the treatment of metabolic or endocrine disorders, 20 for use in the treatment of blood disorders, diseases of the circulatory system, diseases of the respiratory system, cancer or tumour diseases, infectious diseases or immunedeficiencies, for use in hormone replacement therapy or for use in reprogramming of somatic cells 25 more preferably a therapeutic protein selected from Acid sphingomyelinase, Adipotide, Agalsidase-beta, Alglucosidase, alpha-galactosidase A, alpha glucosidase, alpha-L-iduronidase, alpha-N-acetylglucosaminidase, Amphiregulin, Angiopoietins (Ang1, Ang2, Ang3, Ang4, ANGPTL2, ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, ANGPTL7), Betacellulin, Beta 30 glucuronidase, Bone morphogenetic proteins BMPs (BMP1, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP1 0, BMP1 5), CLN6 protein, Epidermal growth factor (EGF), Epigen, Epiregulin, Fibroblast Growth Factor (FGF, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, WO 2013/120629 PCT/EP2013/000461 100 FGF-9, FGF-1 0, FGF-1 1, FGF-1 2, FGF-1 3, FGF-1 4, FGF-1 6, FGF-1 7, FGF-1 7, FGF-18, FGF-19, FGF-20, FGF-21, FGF-22, FGF-23), Galsulphase, Ghrelin, Glucocerebrosidase, GM-CSF, Heparin-binding EGF-like growth factor (HB EGF), Hepatocyte growth factor HGF, Hepcidin, Human albumin, increased 5 loss of albumin, Idursulphase (iduronate-2-sulphatase), Integrins aVp3, aVP5 and a5p1, luduronate sulfatase, Laronidase, N-acetylgalactosamine-4 sulfatase (rhASB; galsulfase, Arylsulfatase A (ARSA), Arylsulfatase B (ARSB)), N-acetylglucosamine-6-sulfatase, Nerve growth factor (NGF, Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin 4/5 10 (NT-4/5), Neuregulin (NRG1, NRG2, NRG3, NRG4), Neuropilin (NRP-1, NRP-2), Obestatin, Platelet Derived Growth factor (PDGF (PDFF-A, PDGF-B, PDGF-C, PDGF-D), TGF beta receptors (endoglin, TGF-beta 1 receptor, TGF beta 2 receptor, TGF-beta 3 receptor), Thrombopoietin (THPO) (Megakaryocyte growth and development factor (MGDF)), Transforming 15 Growth factor (TGF (TGF-a, TGF-beta (TGFbetal, TGFbeta2, and TGFbeta3))), VEGF (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F und PIGF), Nesiritide, Trypsin, adrenocorticotrophic hormone (ACTH), Atrial-natriuretic peptide (ANP), Cholecystokinin, Gastrin, Leptin, Oxytocin, Somatostatin, Vasopressin (antidiuretic hormone), Calcitonin, Exenatide, 20 Growth hormone (GH), somatotropin, Insulin, Insulin-like growth factor 1 IGF-1, Mecasermin rinfabate, IGF-1 analog, Mecasermin, IGF-1 analog, Pegvisomant, Pramlintide, Teriparatide (human parathyroid hormone residues 1-34), Becaplermin, Dibotermin-alpha (Bone morphogenetic protein 2), Histrelin acetate (gonadotropin releasing hormone; GnRH), 25 Octreotide, and Palifermin (keratinocyte growth factor; KGF), Alteplase (tissue plasminogen activator; tPA), Anistreplase, Antithrombin Ill (AT-Ill), Bivalirudin, Darbepoetin-alpha, Drotrecogin-alpha (activated protein C, Erythropoietin, Epoetin-alpha, erythropoetin, erthropoyetin, Factor IX, Factor VIla, Factor VIII, Lepirudin, Protein C concentrate, Reteplase (deletion 30 mutein of tPA), Streptokinase, Tenecteplase, Urokinase, Angiostatin, Anti CD22 immunotoxin, Denileukin diftitox, Immunocyanin, MPS (Metal lopansti mul in), Aflibercept, Endostatin, Collagenase, Human deoxy ribonuclease I, dornase, Hyaluronidase, Papain, L-Asparaginase, Peg- WO 2013/120629 PCT/EP2013/000461 101 asparaginase, Rasburicase, Human chorionic gonadotropin (HCG), Human follicle-stimulating hormone (FSH), Lutropin-alpha, Prolactin, alpha-1 Proteinase inhibitor, Lactase, Pancreatic enzymes (lipase, amylase, protease), Adenosine deaminase (pegademase bovine, PEG-ADA), Abatacept, 5 Alefacept, Anakinra, Etanercept, Interleukin-1 (IL-1) receptor antagonist, Anakinra, Thymulin, TNF-alpha antagonist, Enfuvirtide, Thymosin al, oestrogens, progesterone or progestins, testosterone, Oct-3/4, Sox gene family (Sox1, Sox2, Sox3, and Sox15), Klf family (Klf1, Klf2, KIf4, and Klf5), Myc family (c-myc, L-myc, and N-myc), Nanog, and LIN28. 10 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the 15 expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. 20 Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, 25 variant or derivative thereof, preferably a therapeutic protein selected from adjuvant or immunostimulating proteins, human adjuvant proteins, bacterial (adjuvant) proteins, protozoan (adjuvant) proteins, viral (adjuvant) proteins, fungal (adjuvant) proteins, more preferably selected from human adjuvant proteins, most preferably selected from pattern recognition receptors TLR1, 30 TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR1 0, TLR1 1; NODI, NOD2, NOD3, NOD4, NOD5, NALPI, NALP2, NALP3, NALP4, NALP5, NALP6, NALP6, NALP7, NALP7, NALP8, NALP9, NALP1 0, NALP1 1, NALP1 2, NALP13, NALP14,I IPAF, NAIP, CIITA, RIG-I, MDA5 and LGP2, the signal WO 2013/120629 PCT/EP2013/000461 102 transducers of TLR signaling including adaptor proteins including e.g. Trif and Cardif; components of the Small-GTPases signalling (RhoA, Ras, Rac1, Cdc42, Rab etc.), components of the PIP signalling (P13K, Src-Kinases, etc.), components of the MyD88-dependent signalling (MyD88, IRAK1, IRAK2, 5 IRAK4, TIRAP, TRAF6 etc.), components of the MyD88-independent signalling (TICAM1, TICAM2, TRAF6, TBK1, IRF3, TAKI, IRAKI etc.); the activated kinases including e.g. Akt, MEKK1, MKK1, MKK3, MKK4, MKK6, MKK7, ERK1, ERK2, GSK3, PKC kinases, PKD kinases, GSK3 kinases, JNK, p38MAPK, TAK1, IKK, and TAKI; the activated transcription factors including e.g. NF-KB, c-Fos, 10 c-Jun, c-Myc, CREB, AP-1, Elk-1, ATF2, IRF-3, IRF-7, heat shock proteins, such as HSP10, HSP60, HSP65, HSP70, HSP75 and HSP90, gp96, Fibrinogen, TypIll repeat extra domain A of fibronectin; or components of the complement system including C1q, MBL, C1r, C1s, C2b, Bb, D, MASP-1, MASP-2, C4b, C3b, C5a, C3a, C4a, C5b, C6, C7, C8, C9, CR1, CR2, CR3, CR4, C1qR, C1INH, C4bp, 15 MCP, DAF, H, I, P and CD59, or induced target genes including e.g. Beta Defensin, cell surface proteins; or human adjuvant proteins including trif, fit-3 ligand, Gp96 or fibronectin, cytokines which induce or enhance an innate immune response, including IL-1 alpha, IL1 beta, IL-2, IL-6, IL-7, IL-8, IL-9, IL 12, IL-13, IL-15, IL-16, IL-17, IL-18, IL-21, IL-23, TNFalpha, IFNalpha, IFNbeta, 20 IFNgamma, GM-CSF, G-CSF, M-CSF; chemokines including IL-8, IP-10, MCP 1, MIP-lalpha, RANTES, Eotaxin, CCL21; cytokines which are released from macrophages, including IL-i, IL-6, IL-8, IL-12 and TNF-alpha; as well as IL-1R1 and IL-1 alpha, bacterial heat shock proteins or chaperons, including Hsp60, Hsp70, Hsp90, Hsp1 00; OmpA (Outer membrane protein) from gram-negative 25 bacteria; bacterial porins, including OmpF; bacterial toxins, including pertussis toxin (PT) from Bordetellapertussis, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, PT-9K/129G mutant from pertussis toxin, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, tetanus toxin, cholera toxin (CT), cholera toxin B-subunit, CTK63 mutant from 30 cholera toxin, CTE112K mutant from CT, Escherichia co/i heat-labile enterotoxin (LT), B subunit from heat-labile enterotoxin (LTB) Escherichia co/i heat-labile enterotoxin mutants with reduced toxicity, including LTK63, LTR72; phenol-soluble modulin; neutrophil-activating protein (HP-NAP) from WO 2013/120629 PCT/EP2013/000461 103 Helicobacterpy/ori Surfactant protein D; Outer surface protein A lipoprotein from Borrelia burgdorferi, Ag38 (38 kDa antigen) from Mycobacterium tuberculosis; proteins from bacterial fimbriae; Enterotoxin CT of Vibrio cholerae, Pilin from pili from gram negative bacteria, and Surfactant protein A 5 and bacterial flagellins, Tc52 from Trypanosoma cruzi, PFTG from Trypanosoma gondii, Protozoan heat shock proteins, LeIF from Leishmania spp., profiling-like protein from Toxoplasma gondii, Respiratory Syncytial Virus fusion glycoprotein (F-protein), envelope protein from MMT virus, mouse leukemia virus protein, Hemagglutinin protein of wild-type measles virus, 10 fungal immunomodulatory protein (FIP; LZ-8); and Keyhole limpet hemocyanin (KLH), OspA. Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; 15 b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic antibody selected from antibodies used for the treatment of cancer or tumour diseases, preferably 1311 20 tositumomab, 3F8, 8H9, Abagovomab, Adecatumumab, Afutuzumab, Alacizumab pegol, Alemtuzumab, Amatuximab, AME-1 33v, AMG 102, Anatumomab mafenatox, Apolizumab, Bavituximab, Bectumomab, Belimumab, Bevacizumab, Bivatuzumab mertansine, Blinatumomab, Brentuximab vedotin, Cantuzumab, Cantuzumab mertansine, Cantuzumab ravtansine, Capromab pendetide, Carlumab, 25 Catumaxomab, Cetuximab, Citatuzumab bogatox, Cixutumumab, Clivatuzumab tetraxetan, CNTO 328, CNTO 95, Conatumumab, Dacetuzumab, Dalotuzumab, Denosumab, Detumomab, Drozitumab, Ecromeximab, Edrecolomab, Elotuzumab, Elsilimomab, Enavatuzumab, Ensituximab, Epratuzumab, Ertumaxomab, Ertumaxomab, Etaracizumab, Farletuzumab, FBTA05, Ficlatuzumab, Figitumumab, 30 Flanvotumab, Galiximab, Galiximab, Ganitumab, GC1008, Gemtuzumab, Gemtuzumab ozogamicin, Girentuximab, Glembatumumab vedotin, GS6624, HuC242-DM4, HuHMFG1, HuN901-DM1, Ibritumomab, lcrucumab, ID09C3, Indatuximab ravtansine, Inotuzumab ozogamicin, Intetumumab, Ipilimumab, WO 2013/120629 PCT/EP2013/000461 104 Iratumumab, Labetuzumab, Lexatumumab, Lintuzumab, Lorvotuzumab mertansine, Lucatumumab, Lumiliximab, Mapatumumab, Matuzumab, MDX-060, MEDI 522, Mitumomab, Mogamulizumab, MORab-003, MORab-009, Moxetumomab pasudotox, MT103, Nacolomab tafenatox, Naptumomab estafenatox, Narnatumab, 5 Necitumumab, Nimotuzumab, Nimotuzumab, Olaratumab, Onartuzumab, Oportuzumab monatox, Oregovomab, Oregovomab, PAM4, Panitumumab, Patritumab, Pemtumomab, Pertuzumab, Pritumumab, Racotumomab, Radretumab, Ramucirumab, Rilotumumab, Rituximab, Robatumumab, Samalizumab, SGN-30, SGN-40, Sibrotuzumab, Siltuximab, Tabalumab, Tacatuzumab tetraxetan, 10 Taplitumomab paptox, Tenatumomab, Teprotumumab, TGN1412, Ticilimumab (= tremelimumab), Tigatuzumab, TNX-650, Tositumomab, Trastuzumab, TRBSO7, Tremelimumab, TRU-016, TRU-016, Tucotuzumab celmoleukin, Ublituximab, Urelumab, Veltuzumab, Veltuzumab-(IMMU-106), Volociximab, Votumumab, WX G250, Zalutumumab, Zanolimumab, Efalizumab, Epratuzumab, Etrolizumab, 15 Fontolizumab, Ixekizumab, Mepolizumab, Milatuzumab, Pooled immunoglobulins, Priliximab, Rituximab, Rontalizumab, Ruplizumab, Saril umab, Vedolizumab, Visilizumab, Reslizumab, Adalimumab, Aselizumab, Atinumab, Atlizumab, Bertilimumab, Besi lesomab, BMS-945429, Briakinumab, Brodalumab, Canakinumab, Canakinumab, Certolizumab pegol, Erlizumab, Fezakinumab, 20 Golimumab, Gomiliximab, Infliximab, Mavrilimumab, Natalizumab, Ocrelizumab, Odulimomab, Ofatumumab, Ozoralizumab, Pexelizumab, Rovelizumab, SBI-087, SBI-087, Secukinumab, Sirukumab, Talizumab, Tocilizumab, Toralizumab, TRU 015, TRU-016, Ustekinumab, Ustekinumab, Vepalimomab, Zolimomab aritox, Sifalimumab, Lumiliximab, and Rho(D) Immune Globulin, Afelimomab, CR6261, 25 Edobacomab, Efungumab, Exbivirumab, Felvizumab, Foravirumab, lbalizumab, Libivirumab, Motavizumab, Nebacumab, Tuvirumab, Urtoxazumab, Bavituximab, Pagibaximab, Palivizumab, Panobacumab, PRO 140, Rafivirumab, Raxibacumab, Regavirumab, Sevirumab, Suvizumab, Tefibazumab, Abciximab, Atorolimumab, Eculizumab, Mepolizumab, Milatuzumab, Antithymocyte globulin, Basiliximab, 30 Cedelizumab, Daclizumab, Gavilimomab, Inolimomab, Muromonab-CD3, Muromonab-CD3, Odulimomab, Siplizumab, Gevokizumab, Otelixizumab, Teplizumab, Bapineuzumab, Crenezumab, Gantenerumab, Ponezumab, R-1450, Solanezumab, Benralizumab, Enokizumab, Keliximab, Lebrikizumab, Omalizumab, WO 2013/120629 PCT/EP2013/000461 105 Oxelumab, Pascolizumab, Tralokinumab, Blosozumab, CaroRx, Fresolimumab, Fulranumab, Romosozumab, Stamulumab, Tanezumab, and Ranibizumab. The invention further provides the use of such a nucleic acid sequence in gene therapy as 5 defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and 10 applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; 15 b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein which is a protein hormone. 20 The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a 25 nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. Preferably the invention provides nucleic acid sequence comprising or coding for 30 a) a coding region, encoding at least one peptide or protein; b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; WO 2013/120629 PCT/EP2013/000461 106 wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, preferably a therapeutic protein which is a protein hormone. The invention further provides the use of such a nucleic acid sequence in gene therapy as defined herein. The invention further provides a kit or kit of parts 5 comprising such a nucleic acid sequence. Further, the invention provides a pharmaceutical composition comprising such a nucleic acid sequence. Further, the invention provides a method for increasing the expression fo an encoded peptide or protein comprising the steps of providing such a nucleic acid sequence or a composition containing such a nucleic acid sequence and applying or administering 10 the nucleic acid sequence or othe composition to a cell-free expression system, a cell, a tissue or an organism. In the present invention, if not otherwise indicated, different features of alternatives and embodiments may be combined with each other. Furthermore, the term "comprising" shall 15 not be construed as meaning "consisting of", if not specifically mentioned. However, in the context of the present invention, term "comprising" may be substituted with the term "consisting of", where applicable. WO 2013/120629 PCT/EP2013/000461 107 Figures: The following Figures are intended to illustrate the invention further and shall not be construed to limit the present invention thereto. 5 Figure 1: shows the histone stem-loop consensus sequence generated from metazoan and protozoan stem loop sequences (as reported by Divila L6pez, M., & Samuelsson, T. (2008), RNA (New York, N.Y.), 14(1), 1-10. doi:10.1261/rna.782308). 4001 histone stem-loop sequences from metazoa 10 and protozoa were aligned and the quantity of the occurring nucleotides is indicated for every position in the stem-loop sequence. The generated consensus sequence representing all nucleotides present in the sequences analyzed is given using the single-letter nucleotide code. In addition to the consensus sequence, sequences are shown representing at least 99%, 95% 15 and 90% of the nucleotides present in the sequences analyzed. Figure 2: shows the histone stem-loop consensus sequence generated from protozoan stem loop sequences (as reported by Davila L6pez, M., & Samuelsson, T. 20 (2008), RNA (New York, N.Y.), 14(1), 1-10. doi:10.1261/rna.782308). 131 histone stem-loop sequences from protozoa were aligned and the quantity of the occurring nucleotides is indicated for every position in the stem-loop sequence. The generated consensus sequence representing all nucleotides present in the sequences analyzed is given using the single-letter nucleotide 25 code. In addition to the consensus sequence, sequences are shown representing at least 99%, 95% and 90% of the nucleotides present in the sequences analyzed. Figure 3: shows the histone stem-loop consensus sequence generated from metazoan 30 stem loop sequences (as reported by Ddvila L6pez, M., & Samuelsson, T. (2008), RNA (New York, N.Y.), 14(1), 1-10. doi:10.1261/rna.782308). 3870 histone stem-loop sequences from metazoa were aligned and the quantity of the occurring nucleotides is indicated for every position in the stem-loop WO 2013/120629 PCT/EP2013/000461 108 sequence. The generated consensus sequence representing all nucleotides present in the sequences analyzed is given using the single-letter nucleotide code. In addition to the consensus sequence, sequences are shown representing at least 99%, 95% and 90% of the nucleotides present in the 5 sequences analyzed. Figure 4: shows the histone stem-loop consensus sequence generated from vertebrate stem loop sequences (as reported by Davila L6pez, M., & Samuelsson, T. (2008), RNA (New York, N.Y.), 14(1), 1-10. doi:10.1261/rna.782308). 1333 10 histone stem-loop sequences from vertebrates were aligned and the quantity of the occurring nucleotides is indicated for every position in the stem-loop sequence. The generated consensus sequence representing all nucleotides present in the sequences analyzed is given using the single-letter nucleotide code. In addition to the consensus sequence, sequences are shown 15 representing at least 99%, 95% and 90% of the nucleotides present in the sequences analyzed. Figure 5: shows the histone stem-loop consensus sequence generated from human (Homo sapiens) stem loop sequences (as reported by Divila L6pez, M., & 20 Samuelsson, T. (2008), RNA (New York, N.Y.), 14(1), 1-10. doi:10.1261/rna.782308). 84 histone stem-loop sequences from humans were aligned and the quantity of the occurring nucleotides is indicated for every position in the stem-loop sequence. The generated consensus sequence representing all nucleotides present in the sequences analyzed is 25 given using the single-letter nucleotide code. In addition to the consensus sequence, sequences are shown representing at least 99%, 95% and 90% of the nucleotides present in the sequences analyzed. Figures 6 to 19: show mRNAs from in vitro transcription. 30 Given are the designation and the sequence of mRNAs obtained by in vitro transcription. The following abbreviations are used: ppLuc (GC): GC-enriched mRNA sequence coding for Photinus pyralis luciferase WO 2013/120629 PCT/EP2013/000461 109 ag: 3' untranslated region (UTR) of the alpha globin gene A64: poly(A)-sequence with 64 adenylates Al 20: poly(A)-sequence wit 120 adenylates histoneSL: histone stem-loop 5 aCPSL: stem loop which has been selected from a library for its specific binding of the aCP-2KL protein PolioCL: 5' clover leaf from Polio virus genomic RNA G30: poly(G) sequence with 30 guanylates U30: poly(U) sequence with 30 uridylates 10 SL: unspecific/artificial stem-loop N32: unspecific sequence of 32 nucleotides MmEPO (GC): GC-enriched mRNA sequence coding for murine EPO Within the sequences, the following elements are highlighted: coding region (ORF) (capital letters), ag (bold), histoneSL (underlined), further distinct 15 sequences tested (italic). Figure 6: shows the mRNA sequence of ppLuc(GC) - ag (SEQ ID NO: 43). By linearization of the original vector at the restriction site immediately following the alpha-globin 3'-UTR (ag), mRNA is obtained lacking a poly(A) 20 sequence. Figure 7: shows the mRNA sequence of ppLuc(GC) - ag - A64 (SEQ ID NO: 44). By linearization of the original vector at the restriction site immediately following the A64 poly(A)-sequence, mRNA is obtained ending with an A64 25 poly(A) sequence. Figure 8: shows the mRNA sequence of ppLuc(GC) - ag - histoneSL (SEQ ID NO: 45). The A64 poly(A) sequence was replaced by a histoneSL. The histone stem loop sequence used in the examples was obtained from Cakmakci et a. 30 (2008). Molecular and Cellular Biology 28(3), 1182-1194. Figure 9: shows the mRNA sequence of ppLuc(GC) - ag - A64 - histoneSL (SEQ ID NO: 46). The histoneSL was appended 3' of A64 poly(A). 35 Figure 10: shows the mRNA sequence of ppLuc(GC) - ag - Al 20 (SEQ ID NO: 47). The A64 poly(A) sequence was replaced by an A120 poly(A) sequence. WO 2013/120629 PCT/EP2013/000461 110 Figure 11: shows the mRNA sequence of ppLuc(GC) - ag - A64 - ag (SEQ ID NO: 48). A second alpha-globin 3'-UTR was appended 3' of A64 poly(A). 5 Figure 12: shows the mRNA sequence of ppLuc(GC) - ag - A64 - aCPSL (SEQ ID NO: 49). A stem loop was appended 3' of A64 poly(A). The stem loop has been selected from a library for its specific binding of the aCP-2KL protein (Thisted et al., (2001), The Journal of Biological Chemistry, 276(20), 17484-17496). 10 aCP-2KL is an isoform of aCP-2, the most strongly expressed aCP protein (alpha-globin mRNA poly(C) binding protein) (Makeyev et al, (2000), Genomics, 67(3), 301-316), a group of RNA binding proteins, which bind to the alpha-globin 3'-UTR (Chkheidze et al, (1999), Molecular and Cellular Biology, 19(7), 4572-4581). 15 Figure 13: shows the mRNA sequence of ppLuc(GC) - ag - A64 - PolioCL (SEQ ID NO: 50). The 5' clover leaf from Polio virus genomic RNA was appended 3' of A64 poly(A). 20 Figure 14: shows the mRNA sequence of ppLuc(GC) - ag - A64 - G30 (SEQ ID NO: 51) A stretch of 30 guanylates was appended 3' of A64 poly(A). Figure 15: shows the mRNA sequence of.ppLuc(GC) - ag - A64 - U30 (SEQ ID NO: 52) 25 A stretch of 30 uridylates was appended 3' of A64 poly(A). Figure 16: shows the mRNA sequence of ppLuc(GC) - ag - A64 - SL (SEQ ID NO: 53) A stem loop was appended 3' of A64 poly(A). The upper part of the stem and the loop were taken from (Babendure et al, (2006), RNA (New York, N.Y.), 30 12(5), 851-861). The stem loop consists of a 17 base pair long, CG-rich stem and a 6 base long loop. Figure 17: shows ppLuc(GC) - ag - A64 - N32 (SEQ ID NO: 54) WO 2013/120629 PCT/EP2013/000461 111 By linearization of the original vector at an alternative restriction site, mRNA is obtained with 32 additional nucleotides following poly(A). Figure 18: shows the mRNA sequence of MmEPO (GC) - ag - A64 -C30 (SEQ ID NO: 5 55) Figure 19: shows the mRNA sequence of MmEPO (GC) - ag - A64 -C30 - histoneSL (SEQ ID NO: 56) 10 Figure 20: shows that the combination of poly(A) and histoneSL increases protein expression from mRNA in a synergistic manner. The effect of poly(A) sequence, histoneSL, and the combination of poly(A) and histoneSL on luciferase expression from mRNA was examined. Therefore different mRNAs were electroporated into HeLa cells. Luciferase levels were 15 measured at 6, 24, and 48 hours after transfection. Little luciferase is expressed from mRNA having neither poly(A) sequence nor histoneSL. Both a poly(A) sequence or the histoneSL increase the luciferase level. Strikingly however, the combination of poly(A) and histoneSL further strongly increases the luciferase level, manifold above the level observed with either of the 20 individual elements, thus acting synergistically. Data are graphed as mean RLU ± SD (relative light units ± standard deviation) for triplicate transfections. Specific RLU are summarized in Example 10.2. Figure 21: shows that the combination of poly(A) and histoneSL increases protein 25 expression from mRNA irrespective of their order. The effect of poly(A) sequence, histoneSL, the combination of poly(A) and histoneSL, and their order on luciferase expression from mRNA was examined. Therefore different mRNAs were lipofected into HeLa cells. Luciferase levels were measured at 6, 24, and 48 hours after the start of 30 transfection. Both an A64 poly(A) sequence or the histoneSL give rise to comparable luciferase levels. Increasing the length of the poly(A) sequence from A64 to A120 or to A300 increases the luciferase level moderately. In contrast, the combination of poly(A) and histoneSL increases the luciferase WO 2013/120629 PCT/EP2013/000461 112 level much further than lengthening of the poly(A) sequence. The combination of poly(A) and histoneSL acts synergistically as it increases the luciferase level manifold above the level observed with either of the individual elements. The synergistic effect of the combination of poly(A) and 5 histoneSL is seen irrespective of the order of poly(A) and histoneSL and irrespective of the length of poly(A) with A64-histoneSL or histoneSL-A250 mRNA. Data are graphed as mean RLU ± SD for triplicate transfections. Specific RLU are summarized in Example 10.3. 10 Figure 22: shows that the rise in protein expression by the combination of poly(A) and histoneSL is specific. The effect of combining poly(A) and histoneSL or poly(A) and alternative sequences on luciferase expression from mRNA was examined. Therefore different mRNAs were electroporated into HeLa cells. Luciferase levels were 15 measured at 6, 24, and 48 hours after transfection. Both a poly(A) sequence or the histoneSL give rise to comparable luciferase levels. The combination of poly(A) and histoneSL strongly increases the luciferase level, manifold above the level observed with either of the individual elements, thus acting synergistically. In contrast, combining poly(A) with any of the other 20 sequences is without effect on the luciferase level compared to mRNA containing only a poly(A) sequence. Thus, the combination of poly(A) and histoneSL acts specifically and synergistically. Data are graphed as mean RLU ± SD for triplicate transfections. Specific RLU are summarized in Example 10.4. 25 Figure 23: shows that the combination of poly(A) and histoneSL increases protein expression from mRNA in a synergistic manner in vivo. The effect of poly(A) sequence, histoneSL, and the combination of poly(A) and histoneSL on luciferase expression from mRNA in vivo was examined. 30 Therefore different mRNAs were injected intradermally into mice. Mice were sacrificed 16 hours after injection and Luciferase levels at the injection sites were measured. Luciferase is expressed from mRNA having either a histoneSL or a poly(A) sequence. Strikingly however, the combination of WO 2013/120629 PCT/EP2013/000461 113 poly(A) and histoneSL strongly increases the luciferase level, manifold above the level observed with either of the individual elements, thus acting synergistically. Data are graphed as mean RLU ± SEM (relative light units i standard error of mean). Specific RLU are summarized in Example 10.5. 5 Figure 24: shows the mRNA sequence of Trastuzumab (GC) - ag - A64 -C30 (SEQ ID NO: 57). This sequence encodes the antibody Trastuzumab (Herceptin) comprising the light and heavy chains as described in W02008/083949. 10 Figure 25: shows the mRNA sequence of Trastuzumab (GC) - ag - A64 -C30 histoneSL (SEQ ID NO: 58). This sequence encodes the antibody Trastuzumab (Herceptin) comprising the light and heavy chains as described in W02008/083949. 15 WO 2013/120629 PCT/EP2013/000461 114 Examples: The following Examples are intended to illustrate the invention further and shall not be construed to limit the present invention thereto. 5 1. Generation of histone-stem-loop consensus sequences Prior to the experiments, histone stem-loop consensus sequences were determined on the basis of metazoan and protozoan histone stem-loop sequences. Sequences were taken from the supplement provided by Lopez et a. (Divila L6pez, M., & 10 Samuelsson, T. (2008), RNA (New York, N.Y.), 14(1), 1-10. doi:10.1261/rna.782308), who identified a large number of natural histone stem loop sequences by searching genomic sequences and expressed sequence tags. First, all sequences from metazoa and protozoa (4001 sequences), or all sequences from protozoa (131 sequences) or alternatively from metazoa (3870 sequences), or from 15 vertebrates (1333 sequences) or from humans (84 sequences) were grouped and aligned. Then, the quantity of the occurring nucleotides was determined for every position. Based on the tables thus obtained, consensus sequences for the 5 different groups of sequences were generated representing all nucleotides present in the sequences analyzed. In addition, more restrictive consensus sequences were also 20 obtained, increasingly emphasizing conserved nucleotides 2. Preparation of DNA-templates A vector for in vitro transcription was constructed containing a T7 promoter followed by a GC-enriched sequence coding for Photinus pyra/is luciferase 25 (ppLuc(GC)), the center part of the 3' untranslated region (UTR) of alpha-globin (ag), and a poly(A) sequence. The poly(A) sequence was immediately followed by a restriction site used for linearization of the vector before in vitro transcription in order to obtain mRNA ending in an A64 poly(A) sequence. mRNA obtained from this vector accordingly by in vitro transcription is designated as ,,ppLuc(GC) - ag 30 A64". Linearization of this vector at alternative restriction sites before in vitro transcription allowed to obtain mRNA either extended by additional nucleotides 3' of A64 or WO 2013/120629 PCT/EP2013/000461 115 lacking A64. In addition, the original vector was modified to include alternative sequences. In summary, the following mRNAs were obtained from these vectors by in vitro transcription (mRNA sequences are given in Figures 6 to 17): 5 ppLuc(GC) - ag (SEQ ID NO: 43) ppLuc(GC) - ag - A64 (SEQ ID NO: 44) ppLuc(GC) - ag - histoneSL (SEQ ID NO: 45) ppLuc(GC) - ag - A64 - histoneSL (SEQ ID NO: 46) ppLuc(GC) - ag - Al 20 (SEQ ID NO: 47) 10 ppLuc(GC) - ag - A64 - ag (SEQ ID NO: 48) ppLuc(GC) - ag - A64 - aCPSL (SEQ ID NO: 49) ppLuc(GC) - ag - A64 - PolioCL (SEQ ID NO: 50) ppLuc(GC) - ag - A64 - G30 (SEQ ID NO: 51) ppLuc(GC) - ag - A64 - U30 (SEQ ID NO: 52) 15 ppLuc(GC) - ag - A64 - SL (SEQ ID NO: 53) ppLuc(GC) - ag - A64 - N32 (SEQ ID NO: 54) Furthermore DNA plasmid sequences coding for the therapeutic protein EPO was prepared accordingly as described above. 20 in summary, the following mRNAs were obtained from these vectors by in vitro transcription (mRNA sequences are given in Figures 18 to 19): MmEPO (GC) - ag - A64 -C30 (SEQ ID NO: 55) MmEPO (GC) - ag - A64 -C30 - histoneSL (SEQ ID NO: 56) 25 Furthermore DNA plasmid sequences coding for the antibody Trastuzumab can be prepared accordingly as described above. The following mRNAs are obtained from these vectors by in vitro transcription (mRNA sequences are given in Figures 24 and 25): 30 Trastuzumab (GC) - ag - A64 -C30 (SEQ ID NO: 57) Trastuzumab (GC) - ag - A64 -C30 - histoneSL (SEQ ID NO: 58) 35 3. In vitro transcription The DNA-template according to Example 2 was linearized and transcribed in vitro using T7-Polymerase. The DNA-template was then digested by DNase-treatment. All WO 2013/120629 PCT/EP2013/000461 116 mRNA-transcripts contained a 5'-CAP structure obtained by adding an excess of N7 Methyl-Guanosi ne-5'-Triphosphate-5'-Guanosi ne to the transcription reaction. mRNA thus obtained was purified and resuspended in water. 5 4. Enzymatic adenylation of mRNA Two mRNAs were enzymatically adenylated: ppLuc(GC) - ag - A64 and ppLuc(GC) - ag - histoneSL. To this end, RNA was incubated with E. co/i Poly(A)-polymerase and ATP (Poly(A) Polymerase Tailing Kit, Epicentre, Madison, USA) following the manufacturer's 10 instructions. mRNA with extended poly(A) sequence was purified and resuspended in water. The length of the poly(A) sequence was determined via agarose gel electrophoresis. Starting mRNAs were extended by approximately 250 adenylates, the mRNAs obtained are designated as ppLuc(GC) - ag - A300 and ppLuc(GC) - ag - histoneSL - A250, respectively. 15 5. Luciferase expression by mRNA electroporation HeLa cells were trypsinized and washed in opti-MEM. 1x10' cells in 200 pl of opti MEM each were electroporated with 0.5 pg of ppLuc-encoding mRNA. As a control, 20 mRNA not coding for ppLuc was electroporated separately. Electroporated cells were seeded in 24-well plates in 1 ml of RPMI 1640 medium. 6, 24, or 48 hours after transfection, medium was aspirated and cells were lysed in 200 pl of lysis buffer (25 mM Tris, pH 7.5 (HCI), 2 mM EDTA, 10% glycerol, 1% Triton X-100, 2 mM DTT, 1 mM PMSF). Lysates were stored at -20'C until ppLuc activity was 25 measured. 6. Luciferase expression by mRNA lipofection HeLa cells were seeded in 96 well plates at a density of 2x10 4 cells per well. The following day, cells were washed in opti-MEM and then transfected with 0.25 pg of 30 Lipofectin-complexed ppLuc-encoding mRNA in 150 pl of opti-MEM. As a control, mRNA not coding for ppLuc was lipofected separately. In some wells, opti-MEM was aspirated and cells were lysed in 200 pl of lysis buffer 6 hours after the start of transfection. In the remaining wells, opti-MEM was exchanged for RPMI 1640 WO 2013/120629 PCT/EP2013/000461 117 medium at that time. In these wells, medium was aspirated and cells were lysed in 200 pl of lysis buffer 24 or 48 hours after the start of transfection. Lysates were stored at -20*C until ppLuc activity was measured. 5 7. Luciferase measurement ppLuc activity was measured as relative light units (RLU) in a BioTek SynergyHT plate reader at 5 seconds measuring time using 50 pl of lysate and 200 pl of luciferin buffer (25 mM Glycylglycin, pH 7.8 (NaOH), 15 mM MgSO 4 , 2 mM ATP, 75 pM luciferin). Specific RLU were calculated by subtracting RLU of the control RNA from 10 total RLU. 8. Luciferase expression by intradermal mRNA injection (Luciferase expression in vivo) Mice were anaesthetized with a mixture of Rompun and Ketavet. Each ppLuc encoding mRNA was injected intradermally (0.5 pg of mRNA in 50 pl per injection). 15 As a control, mRNA not coding for ppLuc was injected separately. 16 hours after injection, mice were sacrificed and tissue collected. Tissue samples were flash frozen in liquid nitrogen and lysed in a tissue lyser (Qiagen) in 800 pl of lysis buffer (25 mM Tris, pH 7.5 (HCI), 2 mM EDTA, 10% glycerol, 1% Triton X-100, 2 mM DTT, 1 mM PMSF). Subsequently samples were centrifuged at 13500 rpm at 4'C for 20 10 minutes. Lysates were stored at -80*C until ppLuc activity was measured (see 7. luciferase measurement). 9. MmEPO expression in HeLa cells HeLa cells are trypsinized and washed in opti-MEM. 1xI05 cells in 200 pl of opti 25 MEM each are electroporated with 0.5 pg of MmEPO-encoding mRNA. As a control, irrelevant mRNA is electroporated separately. Electroporated cells are seeded in 24 well plates in 1 ml of RPMI 1640 medium. 6, 24, or 48 hours after transfection, supernatants are taken and harvested from the cells. The content of EPO in the supernatants is measured with the Mouse/Rat Erythropoietin Quantikine ELISA Kit 30 (R&D Systems) according to the manufacturer's instructions. 10. RESULTS WO 2013/120629 PCT/EP2013/000461 118 10.1 Histone stem-loop sequences: In order to characterize histone stem-loop sequences, sequences from metazoa and protozoa (4001 sequences), or from protozoa (131 sequences) or alternatively from metazoa (3870 sequences), or from vertebrates (1333 sequences) or from humans 5 (84 sequences) were grouped and aligned. Then, the quantity of the occurring nucleotides was determined for every position. Based on the tables thus obtained, consensus sequences for the 5 different groups of sequences were generated representing all nucleotides present in the sequences analyzed. Within the consensus sequence of metazoa and protozoa combined, 3 nucleotides are 10 conserved, a T/U in the loop and a G and a C in the stem, forming a base pair. Structurally, typically a 6 base-pair stem and a loop of 4 nucleotides is formed. However, deviating structures are common: Of 84 human histone stem-loops, two contain a stem of only 5 nucleotides comprising 4 base-pairs and one mismatch. Another human histone stem-loop contains a stem of only 5 base-pairs. Four more 15 human histone stem-loops contain a 6 nucleotide long stem, but include one mismatch at three different positions, respectively. Furthermore, four human histone stem-loops contain one wobble base-pair at two different positions, respectively. Concerning the loop, a length of 4 nucleotides seems not to be strictly required, as a loop of 5 nucleotides has been identified in D. discoideum 20 in addition to the consensus sequences representing all nucleotides present in the sequences analyzed, more restrictive consensus sequences were also obtained, increasingly emphasizing conserved nucleotides. In summary, the following sequences were obtained: 25 (Cons): represents all nucleotides present (99%): represents at least 99% of all nucleotides present (95%): represents at least 95% of all nucleotides present (90%): represents at least 90% of all nucleotides present 30 The results of the analysis of histone stem-loop sequences are summarized in the following Tables 1 to 5 (see also Fig. 1 to 5): WO 2013/120629 PCT/EP2013/000461 119 Table 1: Metzoan and protozoan histone stem-loop consensus sequence: (based on an alignment of 4001 metazoan and protozoan histone stem-loop sequences) (see also Fig. 1) I. . . . .< .< < < < <.> > > #A 22 158 075 8721284 184 0 13 12 9 1 47 59 0 675 818 195 159 523 0 14 727 61 771 012 499 #T 172 188 47 205 19 6 0 569 162 199 94 83 70 001 182 1 21 15 11 0 179 8 64 557 201 690 #C 155 211 875 918 675 270 0 39 342 783 51 119 227 0 14 7 50 31 16 001 543 154 87 63 1744 674 #G 25 16 4 6 23 541 001 25 27 10 2 5 11 0 4 175 735 359 451 0 265 112 4 37 43 138 Con N* N* N N N N G N N N N N N T N N N N N C N N N N* N* N* 99% H*H* H H V V G Y Y Y Y H H T H R V V R C B V H H* N* N* 95% M* H* M H M S G Y YY T T TM A R R R C SM C H* H* H* 90% M* M* M M M SC Y Y C T T T TM AG R R C S A C H* M* H* 5 able 2: Protozoan histone stem-loop consensus sequence: (based on an alignment of 131 protozoan histone stem-loop sequences) (see also Fig. 2) 1 1 < < < < < I< . . . Ie > > > > > > #A 52 32 71 82 76 13 0 12 12 9 1 46 3 0 75 82 53 79 20 0 4 94 17 35 74 56 #T 20 32 37 21 8 3 0 21 85 58 86 70 65 131 28 1 17 13 10 0 15 7 31 32 20 28 # C 45 59 20 25 38 0 0 86 8 54 42 13 58 0 27 2 6 31 10 131 112 5 82 58 30 40 # G 14 8 3 3 9 115 131 12 26 10 2 2 5 0 1 46 55 8 91 0 0 25 1 6 7 7 Cons N* IN N N N D G N N N N N N T N N N N N C H N N N* N* N* 99% N* N* N N N D G N N N B N N T H V N N N C H N H N* N* N* 95% N* N* H H N R G N N N Y H B T H R D N N C Y D H H* N* N* 90%N*H* H H V R G N D B Y H Y T H R D H N C Y R H H* H* H* Table 3: Metazoan histone stem-loop consensus sequence: (based on an alignment 10 of 3870 (including 1333 vertebrate sequences) metazoan histone stem-loop sequences) (see also Fig. 3) 1 1 < < < 1< 1< 1< . e . . > > 1> > > 1> 1 #A 1721554 004 790120 171 0 1 0 0 0 1 56 0 600 736 142 151 503 0 10 633 44 736 193 443 #T 152 156 10 184 11 3 0 548 1535 141 861 76 639 87 154 0 4 2 1 0 164 1 33 525 181 662 # C 1512 152 855 893 63 270 0 308 334 729 9 106 169 0 113 5 44 0 6 870 431 149 78 57 1714 634 #G 11 8 1 3 14 426 870 13 1 0 0 3 6 0 3 129 680 351 36 0 265 87 3 31 36 131 Con N' N' N N N N G N B Y Y N N T N V N D N C N N N N' N* N* 99% H* H* M H M V G Y Y Y T Y H T H R V R R C B V M H* H* N* 95% M* M* M M M S G Y Y C T T Y TM A G R R C S M C H* H* H* 90% M* M* M M M S G Y Y C T T T TM A G R R C S A C H*M*H* WO 2013/120629 PCT/EP2013/000461 120 Table 4: Vertebrate histone stem-loop consensus sequence: (based on an alignment of 1333 vertebrate histone stem-loop sequences) (see also Fig. 4) 1 1 _ _ _ < < < < < < e e- * * > I> > > > I> # A 661 146 13151323920 8 0 1 0 0 0 1 4 0 441 1333 0 1199 21 0 1 1126 26 81 380960 # T 63 121 2 2 6 2 0 39 1217 2 1331132912071333 30 0 1 0 1 0 2 1 22 91 91 12 :C 60111062 16 6 403 1 0 1293 116 1331 2 0 121 0 862 0 2 0 0 13331328 128 12841143834361 #G 8 4 0 2 4 13221333 0 0 0 0 3 1 0 0 0 1330 134 1311 0 2 78 1 18 28 0 Cons N* N* H N N N G H Y Y Y D N T H A B R D C N N N N* N* H* 99% H* H* M A M G G Y Y C T T Y T HA G R R C C V H N* N* M* 95% H* H* A A M G C Y C T M A G R G C C V C H* H* M* 90%M* M* A A M G G C T C T T T TM A G R G C C M C Y*MM 5 Table 5: Homo sapiens histone stem-loop consensus sequence: (based on an alignment of 84 human histone stem-loop sequences) (see also Fig.5) I I -< < < < < < . . . Ie > > I> > > I> I #A 10 17 84 84 76 1 0 1 0 0 0 1 0 0 12 84 0 65 3 0 0 69 5 0 10 64 #T 8 6 0 0 2 2 0 1 67 0 84 80 81 84 5 0 0 0 0 0 0 0 4 25 24 3 #C 62 61 0 0 6 0 0 82 17 84 0 0 3 0 67 0 1 0 0 84 84 5 75 57 44 17 #G 4 0 0 0 0 81 84 0 0 0 0 3 0 0 0 0 83 19 81 0 0 10 0 2 6 0 Cons N* H* A A H D G H Y C T D Y T H A S R R C C V H B* N* H* 99% N* H* A A H D G H Y C T D Y T H A S R R C C V H B* N* H* 95% H* H* A A M G G C Y C T T T T H A G R G C C V M Y* N* M* 90% H* M* A A A G G C Y C T T T T M A G R G C C R M Y* H* M* 10 Wherein the used abbreviations were defined as followed: abbreviation Nucleotide bases remark G G Guanine A A Adenine T T Thymine U U Uracile C C Cytosine R G or A Purine Y T/U or C Pyrimidine M AorC Amino K G or T/U Keto S G or C Strong (3H bonds) W A or T/U Weak (2H bonds) H A or C or T/U Not G B G or T/U or C Not A V G or C or A Not T/U D G or A or T/U Not C N G or C or T/U or A Any base * present or not Base may be present or not WO 2013/120629 PCT/EP2013/000461 121 10.2 The combination of poly(A) and histoneSL increases protein expression from mRNA in a synergistic manner. To investigate the effect of the combination of poly(A) and histoneSL on protein expression from mRNA, mRNAs with different sequences 3' of the alpha-globin 3' 5 UTR were synthesized: mRNAs either ended just 3' of the 3'-UTR, thus lacking both poly(A) sequence and histoneSL, or contained either an A64 poly(A) sequence or a histoneSL instead, or both A64 poly(A) and histoneSL 3' of the 3'-UTR. Luciferase encoding mRNAs or control mRNA were electroporated into HeLa cells. Luciferase levels were measured at 6, 24, and 48 hours after transfection (see following Table 6 10 and Figure 20). Table 6: MRNA RLU at RLU at RLU at 6 hours 24 hours 48 hours ppLuc(GC)-ag-A64-histoneSL 466553 375169 70735 ppLuc(GC)-ag-histoneSL 50947 3022 84 ppLuc(GC)-ag-A64 10471 19529 4364 ppLuc(GC)-ag 997 217 42 Little luciferase was expressed from mRNA having neither poly(A) sequence nor 15 histoneSL. Both a poly(A) sequence or the histoneSL increased the luciferase level to a similar extent. Either mRNA gave rise to a luciferase level much higher than did mRNA lacking both poly(A) and histoneSL. Strikingly however, the combination of poly(A) and histoneSL further strongly increased the luciferase level, manifold above the level observed with either of the individual elements. The magnitude of the rise 20 in luciferase level due to combining poly(A) and histoneSL in the same mRNA demonstrates that they are acting synergistically. The synergy between poly(A) and histoneSL was quantified by dividing the signal from poly(A)-histoneSL mRNA (+/+) by the sum of the signals from histoneSL mRNA 25 (-/+) plus poly(A) mRNA (+/-) (see following Table 7). WO 2013/120629 PCT/EP2013/000461 122 Table 7: A64 histoneSL RLU at RLU at RLU at 6 hours 24 hours 48 hours + + 466553 375169 70735 - + 50947 3022 84 + - 10471 19529 4364 Synergy 7.6 16.6 15.9 The factor thus calculated specifies how much higher the luciferase level from 5 mRNA combining poly(A) and histoneSL is than would be expected if the effects of poly(A) and histoneSL were purely additive. The luciferase level from mRNA combining poly(A) and histoneSL was up to 16.6 times higher than if their effects were purely additive. This result confirms that the combination of poly(A) and histoneSL effects a markedly synergistic increase in protein expression. 10 10.3 The combination of poly(A) and histoneSL increases protein expression from mRNA irrespective of their order. The effect of the combination of poly(A) and histoneSL might depend on the length of the poly(A) sequence and the order of poly(A) and histoneSL. Thus, mRNAs with 15 increasing poly(A) sequence length and mRNA with poly(A) and histoneSL in reversed order were synthesized: Two mRNAs contained 3' of the 3'-UTR either an A120 or an A300 poly(A) sequence. One further mRNA contained 3' of the 3'-UTR first a histoneSL followed by an A250 poly(A) sequence. Luciferase-encoding mRNAs or control mRNA were lipofected into HeLa cells. Luciferase levels were 20 measured at 6, 24, and 48 hours after the start of transfection (see following Table 8 and Figure 21). WO 2013/120629 PCT/EP2013/000461 123 Table 8: mRNA RLU at RLU at RLU at 6 hours 24 hours 48 hours ppLuc(GC)-ag-histoneSL-A250 98472 734222 146479 ppLuc(GC)-ag-A64-histoneSL 123674 317343 89579 ppLuc(GC)-ag-histoneSL 7291 4565 916 ppLuc(GC)-ag-A300 4357 38560 11829 ppLuc(GC)-ag-A120 4371 45929 10142 ppLuc(GC)-ag-A64 1928 26781 537 Both an A64 poly(A) sequence or the histoneSL gave rise to comparable luciferase 5 levels. In agreement with the previous experiment did the combination of A64 and histoneSL strongly increase the luciferase level, manifold above the level observed with either of the individual elements. The magnitude of the rise in luciferase level due to combining poly(A) and histoneSL in the same mRNA demonstrates that they are acting synergistically. The synergy between A64 and histoneSL was quantified as 10 before based on the luciferase levels of A64-histoneSL, A64, and histoneSL mRNA (see following Table 9). The luciferase level from mRNA combining A64 and histoneSL was up to 61.7 times higher than if the effects of poly(A) and histoneSL were purely additive. 15 Table 9: A64 histoneSL RLU at RLU at RLU at 6 hours 24 hours 48 hours + + 123674 317343 89579 - + 7291 4565 916 + - 1928 26781 537 Synergy 1 13.4 10.1 61.7 In contrast, increasing the length of the poly(A) sequence from A64 to A120 or to A300 increased the luciferase level only moderately (see Table 8 and Figure 19). mRNA with the longest poly(A) sequence, A300, was also compared to mRNA in 20 which a poly(A) sequence of similar length was combined with the histoneSL, histoneSL-A250. In addition to having a long poly(A) sequence, the order of histoneSL and poly(A) is reversed in this mRNA relative to A64-histoneSL mRNA. WO 2013/120629 PCT/EP2013/000461 124 The combination of A250 and histoneSL strongly increased the luciferase level, manifold above the level observed with either histoneSL or A300. Again, the synergy between A250 and histoneSL was quantified as before comparing RLU from histoneSL-A250 mRNA to RLU from A300 mRNA plus histoneSL mRNA (see 5 following Table 10). The luciferase level from mRNA combining A250 and histoneSL was up to 17.0 times higher than if the effects of poly(A) and histoneSL were purely additive. Table 10: histoneSL A250/A300 RLU at RLU at RLU at 6 hours 24 hours 48 hours + + 98472 734222 146479 + - 7291 4565 916 - + 4357 38560 11829 Synergy 8.5 17.0 11.5 10 In summary, a highly synergistic effect of the combination of histoneSL and poly(A) on protein expression from mRNA has been demonstrated for substantially different lengths of poly(A) and irrespective of the order of poly(A) and histoneSL. 15 10.4 The rise in protein expression by the combination of poly(A) and histoneSL is specific To investigate whether the effect of the combination of poly(A) and histoneSL on protein expression from mRNA is specific, mRNAs with alternative sequences in combination with poly(A) were synthesized: These mRNAs contained 3' of A64 one 20 of seven distinct sequences, respectively. Luciferase-encoding mRNAs or control mRNA were electroporated into HeLa cells. Luciferase levels were measured at 6, 24, and 48 hours after transfection (see following Table 11 and Figure 22). WO 2013/120629 PCT/EP2013/000461 125 Table 11: mRNA RLU at RLU at RLU at 6 hours 24 hours 48 hours ppLuc(GC)-ag-A64-N32 33501 38979 2641 ppLuc(GC)-ag-A64-SL 28176 20364 874 ppLuc(GC)-ag-A64-U30 41632 54676 3408 ppLuc(GC)-ag-A64-G30 46763 49210 3382 ppLuc(GC)-ag-A64-PolioCL 46428 26090 1655 ppLuc(GC)-ag-A64-aCPSL 34176 53090 3338 ppLuc(GC)-ag-A64-ag 18534 18194 989 ppLuc(GC)-ag-A64-histoneSL 282677 437543 69292 ppLuc(GC)-ag-histoneSL 27597 3171 0 ppLuc(GC)-ag-A64 14339 48414 9357 Both a poly(A) sequence or the histoneSL gave rise to comparable luciferase levels. 5 Again, the combination of poly(A) and histoneSL strongly increased the luciferase level, manifold above the level observed with either of the individual elements, thus acting synergistically. In contrast, combining poly(A) with any of the alternative sequences was without effect on the luciferase level compared to mRNA containing only a poly(A) sequence. Thus, the combination of poly(A) and histoneSL increases 10 protein expression from mRNA in a synergistic manner, and this effect is specific. 10.5 The combination of poly(A) and histoneSL increases protein expression from mRNA in a synergistic manner in vivo. To investigate the effect of the combination of poly(A) and histoneSL on protein 15 expression from mRNA in vivo, Luciferase-encoding mRNAs with different sequences 3' of the alpha-globin 3'-UTR or control mRNA were injected intradermally into mice: mRNAs contained either an A64 poly(A) sequence or a histoneSL instead, or both A64 poly(A) and histoneSL 3' of the 3'-UTR. Luciferase levels were measured at 16 hours after injection (see following Table 12 and Figure 20 23). WO 2013/120629 PCT/EP2013/000461 126 Table 12: mRNA RLU at 16 hours ppLuc(GC)-ag-A64-histoneSL 38081 ppLuc(GC)-ag-histoneSL 137 ppLuc(GC)-ag-A64 4607 Luciferase was expressed from mRNA having either a histoneSL or a poly(A) 5 sequence. Strikingly, however, the combination of poly(A) and histoneSL further strongly increased the luciferase level, manifold above the level observed with either of the individual elements. The magnitude of the rise in luciferase level due to combining poly(A) and histoneSL in the same mRNA demonstrates that they are acting synergistically. 10 The synergy between poly(A) and histoneSL was quantified by dividing the signal from poly(A)-histoneSL mRNA (+/+) by the sum of the signals from histoneSL mRNA (-/+) plus poly(A) mRNA (+/-) (see following Table 13). 15 Table 13: A64 histoneSL RLU at ____ __ _ ___ ____ ___ 16 hours + + 38081 - + 137 + - 4607 Synergy 8.0 The factor thus calculated specifies how much higher the luciferase level from mRNA combining poly(A) and histoneSL is than would be expected if the effects of poly(A) and histoneSL were purely additive. The luciferase level from mRNA 20 combining poly(A) and histoneSL was 8 times higher than if their effects were purely additive. This result confirms that the combination of poly(A) and histoneSL effects a markedly synergistic increase in protein expression in vivo. WO 2013/120629 PCT/EP2013/000461 127 11. Antibody expression and characterization Cell lines RNA-based expression of humanised antibodies is done in either CHO-Ki or BHK 5 21 (Syrian hamster kidney, HER2-negative) cells. The tumour cell line BT-474 strongly expresses HER2 and is used to record antibody levels by FACS analysis. All cell lines except CHO are maintained in RPMI medium supplemented with FCS and glutamine according to the supplier's information. CHO cells are grown in Ham's F12 supplemented with 10% FCS. All cell lines can be obtained from the German 10 collection of cell cultures (DSMZ, Braunschweig, Germany). Antibody expression Various amounts of mRNA (G/C enriched as defined by the Figures 24 and 25) encoding the humanised antibody Herceptin (Trastuzumab) is transfected into either 15 CHO or BHK cells by electroporation (300 V, 450 pF for CHO and 300 V, 150 pF for BHK). After transfection, cells are seeded onto 24-well cell culture plates at a density of 200.000 to 400.000 cells per well. For collection of secreted protein, medium is replaced by 250 pl of fresh medium after cell attachment to the plastic surface. Secreted protein is collected for 24-96 hours and stored at 4 "C. In addition, 20 cells are harvested into 50 pl of phosphate buffered saline (1xPBS buffer) containing 0.5% BSA and are disrupted by three freeze-thaw cycles. Cell lysates are cleared by centrifugation and stored at -80 "C. Western Blot analysis 25 In order to detect translation of transfected RNA, proteins from either cell culture supernatants or cell lysates are separated by a 12% SDS-PAGE and blotted onto a nitrocellulose membrane. The humanised antibody Herceptin (Roche) can be used as a control. After blotting is completed, membranes are consecutively incubated with a biotinylated goat anti-human IgG antibody (Dianova), streptavidin coupled to 30 horseradish peroxidase (BD), and a chemiluminescent substrate (SuperSignal West Pico, Pierce). Staining is detected with a Fuji LAS-1000 chemiluminescence camera. WO 2013/120629 PCT/EP2013/000461 128 FACS analysis Functional antibody formation can be demonstrated by FACS staining of antigen expressing target cells. In order to examine the production of functional antibodies, 5 cell culture supernatants of RNA-transfected cells are collected after 48 to 96 hours. Approximately 200.000 target BT-474 cells expressing HER2 are incubated with either control antibodies (Herceptin, Roche) or cell culture supernatants. For detection of bound antibodies, cells are stained with biotinylated goat anti-human IgG (Dianova) and PE-labelled streptavidin (Invitrogen). Cells are analysed on a 10 FACSCanto II (BD).
权利要求:
Claims (19) [1] 1. Nucleic acid sequence comprising or coding for a) a coding region, encoding at least one peptide or protein; 5 b) at least one histone stem-loop, and c) a poly(A) sequence or a polyadenylation signal; wherein said peptide or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, selected from (i) therapeutic proteins for use in the treatment of metabolic or 10 endocrine disorders, (ii) therapeutic proteins for use in the treatment of blood disorders, diseases of the circulatory system, diseases of the respiratory system, cancer or tumour diseases, infectious diseases or immunedeficiencies, 15 (iii) therapeutic proteins used for hormone replacement therapy , (iv) therapeutic proteins used for reprogramming of somatic cells into pluri- or omnipotent stem cells, (v) therapeutic proteins selected from adjuvant or immunostimulating proteins; and 20 (vi) antibodies. [2] 2. The nucleic acid according to claim 1, wherein the at least one histone stem loop is heterologous to the coding region encoding the at least one peptide or protein, preferably, wherein the coding region does not encode a histone 25 protein or fragment, derivate of variant thereof having histone or histone-like function. [3] 3. The nucleic acid according to claim 1 or 2, wherein the peptide or protein encoded by the coding region comprises a therapeutic protein or a fragment, 30 variant or derivative thereof, the fragment, variant or derivative of the therapeutic protein retaining at least 50% of the biological activity of the naturally occuring full-length therapeutic protein. WO 2013/120629 PCT/EP2013/000461 130 [4] 4. The nucleic acid of any of claims 1 to 3, wherein its coding region does not encode a reporter protein or a marker or selection protein. [5] 5. The nucleic acid sequence according to claims 1 to 4, wherein said peptide 5 or protein comprises a therapeutic protein or a fragment, variant or derivative thereof, selected from therapeutic proteins for use in the treatment of metabolic or endocrine disorders including Acid sphingomyelinase, Adipotide, Agalsidase-beta, Alglucosidase, alpha-galactosidase A, alpha glucosidase, alpha-L-iduronidase, alpha-N-acetylglucosaminidase, 10 Amphiregulin, Angiopoietins (Ang1, Ang2, Ang3, Ang4, ANGPTL2, ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, ANGPTL7), Betacellulin, Beta glucuronidase, Bone morphogenetic proteins BMPs (BMP1, BMP2, BMP3, BMP4,- BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP10, BMP15), CLN6 protein, Epidermal growth factor (EGF), Epigen, Epiregulin, Fibroblast Growth 15 Factor (FGF, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-1 0, FGF-1 1, FGF-1 2, FGF-1 3, FGF-1 4, FGF-1 6, FGF-1 7, FGF-1 7, FGF-18, FGF-19, FGF-20, FGF-21, FGF-22, FGF-23), Galsulphase, Ghrelin, Glucocerebrosidase, GM-CSF, Heparin-binding EGF-like growth factor (HB EGF), Hepatocyte growth factor HGF, Hepcidin, Human albumin, increased 20 loss of albumin, Idursulphase (Iduronate-2-sulphatase), Integrins aVP3, aVP5 and a5p1, l uduronate sulfatase, Laronidase, N-acetylgalactosamine-4 sulfatase (rhASB; galsulfase, Arylsulfatase A (ARSA), Arylsulfatase B (ARSB)), N-acetylglucosamine-6-sulfatase, Nerve growth factor (NGF, Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin 4/5 25 (NT-4/5), Neuregulin (NRG1, NRG2, NRG3, NRG4), Neuropilin (NRP-1, NRP-2), Obestatin, Platelet Derived Growth factor (PDGF (PDFF-A, PDGF-B, PDGF-C, PDGF-D), TGF beta receptors (endoglin, TGF-beta 1 receptor, TGF beta 2 receptor, TGF-beta 3 receptor), Thrombopoietin (THPO) (Megakaryocyte growth and development factor (MGDF)), Transforming 30 Growth factor (TGF (TGF-a, TGF-beta (TGFbetal, TGFbeta2, and TGFbeta3))), VEGF (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F und PIGF), Nesiritide, Trypsin, adrenocorticotrophic hormone (ACTH), Atrial-natriuretic peptide (ANP), Cholecystokinin, Gastrin, Leptin, Oxytocin, WO 2013/120629 PCT/EP2013/000461 131 Somatostatin, Vasopressin (antidiuretic hormone), Calcitonin, Exenatide, Growth hormone (GH), somatotropin, Insulin, Insulin-like growth factor 1 IGF-1, Mecasermin rinfabate, IGF-1 analog, Mecasermin, IGF-1 analog, Pegvisomant, Pramlintide, Teriparatide (human parathyroid hormone 5 residues 1-34), Becaplermin, Dibotermin-alpha (Bone morphogenetic protein 2), Histrelin acetate (gonadotropin releasing hormone; GnRH), Octreotide, and Palifermin (keratinocyte growth factor; KGF); therapeutic proteins for use in the treatment of blood disorders, diseases of the circulatory system, diseases of the respiratory system, cancer or tumour 10 diseases, infectious diseases or immunedeficiencies including Alteplase (tissue plasminogen activator; tPA), Anistreplase, Antithrombin III (AT-Ill), Bivalirudin, Darbepoetin-alpha, Drotrecogin-alpha (activated protein C, Erythropoietin, Epoetin-alpha, erythropoetin, erthropoyetin, Factor IX, Factor VIla, Factor VIII, Lepirudin, Protein C concentrate, Reteplase (deletion 15 mutein of tPA), Streptokinase, Tenecteplase, Urokinase, Angiostatin, Anti CD22 immunotoxin, Denileukin diftitox, Immunocyanin, MPS (Metal lopansti mul in), Aflibercept, Endostatin, Collagenase, Human deoxy ribonuclease 1, dornase, Hyaluronidase, Papain, L-Asparaginase, Peg asparaginase, Rasburicase, Human chorionic gonadotropin (HCG), Human 20 follicle-stimulating hormone (FSH), Lutropin-alpha, Prolactin, alpha-1 Proteinase inhibitor, Lactase, Pancreatic enzymes (lipase, amylase, protease), Adenosine deaminase (pegademase bovine, PEG-ADA), Abatacept, Alefacept, Anakinra, Etanercept, Interleukin-1 (IL-1) receptor antagonist, Anakinra, Thymulin, TNF-alpha antagonist, Enfuvirtide, and Thymosin al; 25 therapeutic proteins selected from adjuvant or immunostimulating proteins including human adjuvant proteins, particularly pattern recognition receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11; NOD1, NOD2, NOD3, NOD4, NOD5, NALP1, NALP2, NALP3, NALP4, NALP5, 30 NALP6, NALP6, NALP7, NALP7, NALP8, NALP9, NALP1 0, NALP1 1, NALP12, NALP13, NALP14,1 IPAF, NAIP, CIITA, RIG-1, MDA5 and LGP2, the signal transducers of TLR signaling including adaptor proteins including e.g. Trif and Cardif; components of the Small-GTPases signalling (RhoA, Ras, WO 2013/120629 PCT/EP2013/000461 132 Raci, Cdc42, Rab etc.), components of the PIP signalling (P13K, Src-Kinases, etc.), components of the MyD88-dependent signalling (MyD88, IRAKi, IRAK2, IRAK4, TIRAP, TRAF6 etc.), components of the MyD88-independent signalling (TICAMI, TICAM2, TRAF6, TBK1, IRF3, TAK1, IRAK1 etc.); the 5 activated kinases including e.g. Akt, MEKK1, MKK1, MKK3, MKK4, MKK6, MKK7, ERK1, ERK2, GSK3, PKC kinases, PKD kinases, GSK3 kinases, JNK, p38MAPK, TAK1, IKK, and TAK1; the activated transcription factors including e.g. NF-KB, c-Fos, c-Jun, c-Myc, CREB, AP-1, Elk-1, ATF2, IRF-3, IRF-7, heat shock proteins, such as HSP10, HSP60, HSP65, HSP70, HSP75 10 and HSP90, gp96, Fibrinogen, Typill repeat extra domain A of fibronectin; or components of the complement system including C1q, MBL, C1r, Cis, C2b, Bb, D, MASP-1, MASP-2, C4b, C3b, C5a, C3a, C4a, C5b, C6, C7, C8, C9, CR1, CR2, CR3, CR4, C1 qR, C1 INH, C4bp, MCP, DAF, H, I, P and CD59, or induced target genes including e.g. Beta-Defensin, cell surface proteins; or 15 human adjuvant proteins including trif, flt-3 ligand, Gp96 or fibronectin, cytokines which induce or enhance an innate immune response, including IL-1 alpha, IL1 beta, IL-2, IL-6, IL-7, IL-8, IL-9, IL-12, IL-13, IL-15, IL-16, IL 17, IL-18, IL-21, IL-23, TNFalpha, IFNalpha, IFNbeta, IFNgamma, GM-CSF, G-CSF, M-CSF; chemokines including IL-8, IP-10, MCP-1, MIP-lalpha, 20 RANTES, Eotaxin, CCL21; cytokines which are released from macrophages, including IL-1, IL-6, IL-8, IL-12 and TNF-alpha; as well as IL-1R1 and IL-1 alpha; bacterial (adjuvant) proteins particularly bacterial heat shock proteins or chaperons, including Hsp60, Hsp70, Hsp90, Hsp100; OmpA (Outer 25 membrane protein) from gram-negative bacteria; bacterial porins, including OmpF; bacterial toxins, including pertussis toxin (PT) from Bordetella pertussis, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, PT-9K/129G mutant from pertussis toxin, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, tetanus toxin, 30 cholera toxin (CT), cholera toxin B-subunit, CTK63 mutant from cholera toxin, CTE112K mutant from CT, Escherichia co/i heat-labile enterotoxin (LT), B subunit from heat-labile enterotoxin (LTB) Escherichia co/i heat-labile enterotoxin mutants with reduced toxicity, including LTK63, LTR72; phenol- WO 2013/120629 PCT/EP2013/000461 133 soluble modulin; neutrophil-activating protein (HP-NAP) from He/icobacter py/ori Surfactant protein D; Outer surface protein A lipoprotein from Borrelia burgdorferi, Ag38 (38 kDa antigen) from Mycobacterium tuberculosis; proteins from bacterial fimbriae; Enterotoxin CT of Vibrio 5 cholerae, Pilin from pili from gram negative bacteria, and Surfactant protein A and bacterial flagellins, protozoan (adjuvant) proteins particularly Tc52 from Trypanosoma cruzi, PFTG from Trypanosoma gondii, Protozoan heat shock proteins, LeIF from Leishmania spp., profiling-like protein from Toxoplasma gondii, 10 viral (adjuvant) proteins particularly Respiratory Syncytial Virus fusion glycoprotein (F-protein), envelope protein from MMT virus, mouse leukemia virus protein, Hemagglutinin protein of wild-type measles virus, fungal (adjuvant) proteins particularly fungal immunomodulatory protein (FIP; LZ-8); 15 and Keyhole limpet hemocyanin (KLH), OspA; therapeutic proteins used for hormone replacement therapy, particularly oestrogens, progesterone or progestins, and testosterone; therapeutic proteins used for reprogramming of somatic cells into pluri- or omnipotent stem cells, particularly Oct-3/4, Sox gene family (Sox1, Sox2, 20 Sox3, and Sox1 5), Kif family (Kif1, Klf2, Klf4, and Klf5), Myc family (c-myc, L-myc, and N-myc), Nanog, and LIN28; and therapeutic antibodies selected from antibodies used for the treatment of cancer or tumour diseases, particularly 1311-tositumomab, 3F8, 8H9, Abagovomab, Adecatumumab, Afutuzumab, Alacizumab pegol, 25 Alemtuzumab, Amatuximab, AME-133v, AMG 102, Anatumomab mafenatox, Apolizumab, Bavituximab, Bectumomab, Belimumab, Bevacizumab, Bivatuzumab mertansine, Blinatumomab, Brentuximab vedotin, Cantuzumab, Cantuzumab mertansine, Cantuzumab ravtansine, Capromab pendetide, Carlumab, Catumaxomab, Cetuximab, Citatuzumab 30 bogatox, Cixutumumab, Clivatuzumab tetraxetan, CNTO 328, CNTO 95, Conatumumab, Dacetuzumab, Dalotuzumab, Denosumab, Detumomab, Drozitumab, Ecromeximab, Edrecolomab, Elotuzumab, Elsilimomab, Enavatuzumab, Ensituximab, Epratuzumab, Ertumaxomab, Ertumaxomab, WO 2013/120629 PCT/EP2013/000461 134 Etaracizumab, Farletuzumab, FBTA05, Ficlatuzumab, Figitumumab, Flanvotumab, Galiximab, Galiximab, Ganitumab, GC1008, Gemtuzumab, Gemtuzumab ozogamicin, Girentuximab, Glembatumumab vedotin, GS6624, HuC242-DM4, HuHMFG1, HuN901-DM1, Ibritumomab, 5 Icrucumab, ID09C3, I ndatuximab ravtansine, Inotuzumab ozogamicin, Intetumumab, lpilimumab, Iratumumab, Labetuzumab, Lexatumumab, Lintuzumab, Lorvotuzumab mertansine, Lucatumumab, Lumiliximab, Mapatumumab, Matuzumab, MDX-060, MEDI 522, Mitumomab, Mogamulizumab, MORab-003, MORab-009, Moxetumomab pasudotox, 10 MT103, Nacolomab tafenatox, Naptumomab estafenatox, Narnatumab, Necitumumab, Nimotuzumab, Nimotuzumab, Olaratumab, Onartuzumab, Oportuzumab monatox, Oregovomab, Oregovomab, PAM4, Panitumumab, Patritumab, Pemtumomab, Pertuzumab, Pritumumab, Racotumomab, Radretumab, Ramucirumab, Rilotumumab, Rituximab, Robatumumab, 15 Samalizumab, SGN-30, SGN-40, Sibrotuzumab, Siltuximab, Tabalumab, Tacatuzumab tetraxetan, Taplitumomab paptox, Tenatumomab, Teprotumumab, TGN1412, Ticilimumab (= tremelimumab), Tigatuzumab, TNX-650, Tositumomab, Trastuzumab, TRBSO7, Tremelimumab, TRU-016, TRU-016, Tucotuzumab celmoleukin, Ublituximab, Urelumab, Veltuzumab, 20 Veltuzumab (IMMU-1 06), Volociximab, Votumumab, WX-G250, Zalutumumab, and Zanolimumab; antibodies used for the treatment of immune disorders, particularly Efalizumab, Epratuzumab, Etrolizumab, Fontolizumab, Ixekizumab, Mepolizumab, Milatuzumab, Pooled immunoglobulins, Priliximab, 25 Rituximab, Rontalizumab, Ruplizumab, Sarilumab, Vedolizumab, Visilizumab, Reslizumab, Adalimumab, Aselizumab, Atinumab, Atlizumab, Bertilimumab, Besilesomab, BMS-945429, Briakinumab, Brodalumab, Canakinumab, Canakinumab, Certolizumab pegol, Erlizumab, Fezakinumab, Golimumab, Gomiliximab, Infliximab, Mavrilimumab, Natalizumab, 30 Ocrelizumab, Odulimomab, Ofatumumab, Ozoralizumab, Pexelizumab, Rovelizumab, SBI-087, SBI-087, Secukinumab, Sirukumab, Talizumab, Tocilizumab, Toralizumab, TRU-015, TRU-016, Ustekinumab, Ustekinumab, WO 2013/120629 PCT/EP2013/000461 135 Vepalimomab, Zolimomab aritox, Sifalimumab, Lumiliximab, and Rho(D) Immune Globulin; antibodies used for the treatment of infectious diseases, particularly Afelimomab, CR6261, Edobacomab, Efungumab, Exbivirumab, Felvizumab, 5 Foravirumab, lbalizumab, Libivirumab, Motavizumab, Nebacumab, Tuvirumab, Urtoxazumab, Bavituximab, Pagibaximab, Palivizumab, Panobacumab, PRO 140, Rafivirumab, Raxibacumab, Regavirumab, Sevirumab, Suvizumab, and Tefibazumab; antibodies used for the treatment of blood disorders, particularly Abciximab, 10 Atorolimumab, Eculizumab, Mepolizumab, and Milatuzumab; antibodies used for immunoregulation, particularly Antithymocyte globulin, Basiliximab, Cedelizumab, Daclizumab, Gavilimomab, Inolimomab, Muromonab-CD3, Muromonab-CD3, Odulimomab, and Siplizumab; antibodies used for the treatment of diabetes, particularly Gevokizumab, 15 Otelixizumab, and Teplizumab; antibodies used for the treatment of the Alzheimer's disease, particularly Bapineuzumab, Crenezumab, Gantenerumab, Ponezumab, R1450, and Solanezumab; antibodies used for the treatment of asthma, particularly Benralizumab, 20 Enokizumab, Keliximab, Lebrikizumab, Omalizumab, Oxelumab, Pascolizumab, and Tralokinumab; and antibodies for the treatment of diverse disorders, particularly Blosozumab, CaroRx, Fresolimumab, Fulranumab, Romosozumab, Stamulumab, Tanezumab, and Ranibizumab. 25 [6] 6. Nucleic acid sequence according to claims 1 oto 5, wherein the nucleic acid is an RNA, preferably an mRNA. [7] 7. Nucleic acid sequence according to any of claims 1 to 6, wherein the at least 30 one histone stem-loop is selected from following formulae (1) or (11): WO 2013/120629 PCT/EP2013/000461 136 formula (I) (stem-loop sequence without stem bordering elements): 5 [No- 2 GN 3 5 ] [NO_ 4 (U/r)NO_ 4 ] [N 3 - 5 CNo- 2 ] stem 1 loop stem2 formula (11) (stem-loop sequence with stem bordering elements): 10 N 1 6 [No- 2 GN 3 - 5 ] [NO- 4 (U/T)NO- 4 ] [N 3 . 5 CNo- 2 ] N,_ 6 stem stem loop stem2 stem2 bordering element bordering element 15 wherein: stem or stem2 bordering elements N,. 6 is a consecutive sequence of 1 to 6, preferably of 2 to 6, more preferably of 2 20 to 5, even more preferably of 3 to 5, most preferably of 4 to 5 or 5 N, wherein each N is independently from another selected from a nucleotide selected from A, U, T, G and C, or a nucleotide analogue 25 thereof; stem [No- 2 GN 3 . 5 ] is reverse complementary or partially reverse complementary with element stem2, and is a consecutive sequence between of 5 to 7 nucleotides; 30 wherein No- 2 is a consecutive sequence of 0 to 2, preferably of 0 to 1, more preferably of 1 N, wherein each N is independently from another selected from a WO 2013/120629 PCT/EP2013/000461 137 nucleotide selected from A, U, T, G and C or a nucleotide analogue thereof; wherein N 3 . 5 is a consecutive sequence of 3 to 5, 5 preferably of 4 to 5, more preferably of 4 N, wherein each N is independently from another selected from a nucleotide selected from A, U, T, G and C or a nucleotide analogue thereof, and 10 wherein G is guanosine or an analogue thereof, and may be optionally replaced by a cytidine or an analogue thereof, provided that its complementary nucleotide cytidine in stem2 is replaced by guanosine; 15 loop sequence [NO(U)No] is located between elements stem and stem2, and is a consecutive sequence of 3 to 5 nucleotides, more preferably of 4 nucleotides; wherein each No, is independent from another 20 a consecutive sequence of 0 to 4, preferably of 1 to 3, more preferably of 1 to 2 N, wherein each N is independently from another selected from a nucleotide selected from A, U, T, G and C or a nucleotide analogue thereof; and 25 wherein U/T represents uridine, or optionally thymidine; stem2 [N 3 . 5 CNo- 2 ] is reverse complementary or partially reverse complementary with element stem, and is a consecutive 30 sequence between of 5 to 7 nucleotides; wherein N 3 - 5 is a consecutive sequence of 3 to 5, preferably of 4 to 5, more preferably of 4 N, wherein each N is independently from another selected from a WO 2013/120629 PCT/EP2013/000461 138 nucleotide selected from A, U, T, G and C or a nucleotide analogue thereof; wherein NO 2 is a consecutive sequence of 0 to 2, 5 preferably of 0 to 1, more preferably of 1 N, wherein each N is independently from another selected from a nucleotide selected from A, U, T, G and C or a nucleotide analogue thereof; and 10 wherein C is cytidine or an analogue thereof, and may be optionally replaced by a guanosine or an analogue thereof provided that its complementary nucleotide guanosine in stem is replaced by cytidine; wherein 15 stem and stem2 are capable of base pairing with each other forming a reverse complementary sequence, wherein base pairing may occur between stem and stem2, or forming a partially reverse complementary sequence, wherein an incomplete base pairing may occur between stem and stem2. 20 [8] 8. Nucleic acid sequence according to claim 7, wherein the at least one histone stem-loop is selected from at least one of following formulae (la) or (Ila): [No-.GN 3 - 5 ] [N 1 3 (U/F)No- 2 ] [N 3 - 5 CNO- 1 ] 25 stem loop stem2 formula (la) (stem-loop sequence without stem bordering elements) WO 2013/120629 PCT/EP2013/000461 139 N 2 - 5 [No_,GN 3 - 5 ] [N_ 3 (UT)No- 2 ] [N 3 . 5 CNO_ 1 ] N 2 - 5 stem 1 stem 1 loop stem2 stem2 5 bordering element bordering element formula (Ila) (stem-loop sequence with stem bordering elements). [9] 9. Nucleic acid sequence according to any of claims 1 to 8, wherein the poly(A) sequence comprises a sequence of about 25 to about 400 adenosine nucleotides, preferably 10 a sequence of about 50 to about 400 adenosine nucleotides, more preferably a sequence of about 50 to about 300 adenosine nucleotides, even more preferably a sequence of about 50 to about 250 adenosine nucleotides, most preferably a sequence of about 60 to about 250 adenosine nucleotides. 15 [10] 10. Nucleic acid sequence according to any of claims 1 to 9, wherein the polyadenylation signal comprises the consensus sequence NN(U/T)ANA, preferably AA(U/T)AAA or A(U[V)(UIT)AAA. [11] 11. Nucleic acid sequence according to any of claims 1 to 10, wherein the nucleic acid 20 sequence is a modified nucleic acid, in particular a stabilized nucleic acid. [12] 12. Nucleic acid sequence according to claim 11, wherein the G/C content of the coding region encoding at least one peptide or protein of said modified nucleic acid is increased compared with the G/C content of the coding region of the wild-type nucleic 25 acid, the coded amino acid sequence of said modified nucleic acid preferably not being modified compared with the coded amino acid sequence of the wild-type nucleic acid. [13] 13. A composition or kit or kit of parts comprising a plurality or more than one of nucleic acid sequences each according to any of claims 1 to 12. 30 [14] 14. Nucleic acid sequence as defined according to any of claims 1 to 12 or composition or kit or kit of parts as defined according to claim 13 for use as a medicament. WO 2013/120629 PCT/EP2013/000461 140 [15] 15. Nucleic acid sequence as defined according to any of claims 1 to 12 or composition or kit or kit of parts as defined according to claim 13 for use in gene therapy. [16] 16. Pharmaceutical composition comprising a nucleic acid sequence as defined 5 according to any of claims 1 to 12 or a composition as defined according to claim 13 and optionally a pharmaceutically acceptable carrier. [17] 17. Use of a nucleic acid sequence as defined according to any of claims 1 to 12 or a composition or kit or kit of parts as defined according to claim 13 for increasing the 10 expression of said encoded peptide or protein. [18] 18. Use of a nucleic acid sequence as defined according to any of claims 1 to 12 or composition or kit or kit of parts as defined according to claim 13 for increasing the expression of said encoded peptide or protein in gene therapy. 15 [19] 19. A method for increasing the expression of an encoded peptide or protein comprising the steps: a) providing the nucleic acid sequence as defined according to any of claims 1 to 12 or the composition as defined according to claim 13, 20 b) applying or administering the nucleic acid sequence or the composition to a cell-free expression system, a cell, a tissue or an organism.
类似技术:
公开号 | 公开日 | 专利标题 US10610605B2|2020-04-07|Nucleic acid comprising or coding for a histone stem-loop and a poly| sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein US10799602B2|2020-10-13|Method for increasing expression of RNA-encoded proteins EP2603590B1|2014-09-10|Nucleic acid comprising or coding for a histone stem-loop and a poly| sequence or a polyadenylation signal for increasing the expression of an encoded protein THESS et al.0|Patent 2862476 Summary EP3036330B1|2018-09-12|Method for increasing expression of rna-encoded proteins
同族专利:
公开号 | 公开日 JP2018110588A|2018-07-19| US20210060181A1|2021-03-04| MX2014009884A|2014-11-10| RU2634391C2|2017-10-26| SG11201403944RA|2014-10-30| JP6357111B2|2018-07-11| US10610605B2|2020-04-07| AU2013220749B2|2018-05-17| CN104114705B|2018-06-01| EP2814963A1|2014-12-24| US10898589B2|2021-01-26| RU2014137109A|2016-04-10| US10111968B2|2018-10-30| JP6922038B2|2021-08-18| DK2814963T3|2020-07-27| CA2862476A1|2013-08-22| SG10201606784QA|2016-12-29| US20170056529A1|2017-03-02| CN104114705A|2014-10-22| US20180177894A1|2018-06-28| US20150057340A1|2015-02-26| US9447431B2|2016-09-20| MX359953B|2018-10-17| JP2015508646A|2015-03-23| JP6720235B2|2020-07-08| CN108570468A|2018-09-25| WO2013120629A1|2013-08-22| JP2020191871A|2020-12-03| IN2014DN05670A|2015-04-03| KR102072013B1|2020-01-31| EP2814963B1|2020-04-29| CA2862476C|2021-06-08| KR20140125434A|2014-10-28| ES2806678T3|2021-02-18| BR112014019627A2|2017-06-27| US20180185517A1|2018-07-05| WO2013120497A1|2013-08-22| EP3741859A1|2020-11-25|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US5908779A|1993-12-01|1999-06-01|University Of Connecticut|Targeted RNA degradation using nuclear antisense RNA| WO1998042856A1|1997-03-21|1998-10-01|Enzo Therapeutics, Inc., A Fully Owned Subsidiary Of Enzo Biochem, Inc.|Vectors and viral vectors, and packaging cell lines for propagating same| US6423885B1|1999-08-13|2002-07-23|Commonwealth Scientific And Industrial Research Organization |Methods for obtaining modified phenotypes in plant cells| CA2457959C|2001-06-05|2014-10-28|Curevac Gmbh|Pharmaceutical composition containing a stabilised mrna optimised for translation in its coding regions| US8021875B2|2001-08-27|2011-09-20|Roche Madison Inc.|Methods for expression of transgenes| AU2002350039A1|2001-10-29|2003-05-12|Renovis, Inc.|Method for isolating cell-type specific mrnas| DE10162480A1|2001-12-19|2003-08-07|Ingmar Hoerr|The application of mRNA for use as a therapeutic agent against tumor diseases| DE10229872A1|2002-07-03|2004-01-29|Curevac Gmbh|Immune stimulation through chemically modified RNA| EP2500437B1|2003-01-21|2016-11-30|PTC Therapeutics, Inc.|Methods for identifying compounds that modulate untranslated region-dependent gene expression and methods of using same| US9068234B2|2003-01-21|2015-06-30|Ptc Therapeutics, Inc.|Methods and agents for screening for compounds capable of modulating gene expression| DE10335833A1|2003-08-05|2005-03-03|Curevac Gmbh|Transfection of blood cells with mRNA for immune stimulation and gene therapy| AU2004279991B2|2003-10-10|2010-11-25|Powderject Vaccines, Inc.|Nucleic acid constructs| KR101269656B1|2003-10-24|2013-05-30|셀렉시스 에스. 에이.|High efficiency gene transfer and expression in mammalian cells by a multiple transfection procedure of MAR sequences| DE102004035227A1|2004-07-21|2006-02-16|Curevac Gmbh|mRNA mixture for vaccination against tumor diseases| DE102004042546A1|2004-09-02|2006-03-09|Curevac Gmbh|Combination therapy for immune stimulation| DE102005023170A1|2005-05-19|2006-11-23|Curevac Gmbh|Optimized formulation for mRNA| TR201909609T4|2005-08-23|2019-07-22|Univ Pennsylvania|DNA containing modified nucleosides and methods of use.| DE102005046490A1|2005-09-28|2007-03-29|Johannes-Gutenberg-Universität Mainz|New nucleic acid molecule comprising promoter, a transcriptable nucleic acid sequence, a first and second nucleic acid sequence for producing modified RNA with transcriptional stability and translational efficiency| EP2046954A2|2006-07-31|2009-04-15|Curevac GmbH|NUCLEIC ACID OF FORMULA : GIXmGn, OR : CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT| DE102006035618A1|2006-07-31|2008-02-07|Curevac Gmbh|New nucleic acid useful as immuno-stimulating adjuvant for manufacture of a composition for treatment of cancer diseases e.g. colon carcinomas and infectious diseases e.g. influenza and malaria| DE102006061015A1|2006-12-22|2008-06-26|Curevac Gmbh|Process for the purification of RNA on a preparative scale by HPLC| US20100189729A1|2007-01-09|2010-07-29|Curvac Gmbh|Rna-coded antibody| DE102007001370A1|2007-01-09|2008-07-10|Curevac Gmbh|RNA-encoded antibodies| WO2009030254A1|2007-09-04|2009-03-12|Curevac Gmbh|Complexes of rna and cationic peptides for transfection and for immunostimulation| WO2009046739A1|2007-10-09|2009-04-16|Curevac Gmbh|Composition for treating prostate cancer | WO2009046738A1|2007-10-09|2009-04-16|Curevac Gmbh|Composition for treating lung cancer, particularly of non-small lung cancers | US8343497B2|2008-10-12|2013-01-01|The Brigham And Women's Hospital, Inc.|Targeting of antigen presenting cells with immunonanotherapeutics| SG188104A1|2008-01-31|2013-03-28|Curevac Gmbh|Nucleic acids comprising formula a and derivatives thereof as an immunostimulating agents /adjuvants| GB0815872D0|2008-09-01|2008-10-08|Pasteur Institut|Novel method and compositions| WO2010037408A1|2008-09-30|2010-04-08|Curevac Gmbh|Composition comprising a complexed rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof| ES2679043T3|2009-05-15|2018-08-21|Irx Therapeutics, Inc.|Vaccine immunotherapy| US20110053829A1|2009-09-03|2011-03-03|Curevac Gmbh|Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids| WO2011069529A1|2009-12-09|2011-06-16|Curevac Gmbh|Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids| CN107648604A|2010-07-30|2018-02-02|库瑞瓦格股份公司|The purposes of polymer support load compound and polymer support| WO2012019630A1|2010-08-13|2012-02-16|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded protein| WO2012089225A1|2010-12-29|2012-07-05|Curevac Gmbh|Combination of vaccination and inhibition of mhc class i restricted antigen presentation| WO2012113413A1|2011-02-21|2012-08-30|Curevac Gmbh|Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates| WO2012116715A1|2011-03-02|2012-09-07|Curevac Gmbh|Vaccination in newborns and infants| WO2012116714A1|2011-03-02|2012-09-07|Curevac Gmbh|Vaccination in elderly patients| WO2013113325A1|2012-01-31|2013-08-08|Curevac Gmbh|Negatively charged nucleic acid comprising complexes for immunostimulation| WO2013113326A1|2012-01-31|2013-08-08|Curevac Gmbh|Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen| EP2623121A1|2012-01-31|2013-08-07|Bayer Innovation GmbH|Pharmaceutical composition comprising a polymeric carrier cargo complex and an antigen| WO2013120498A1|2012-02-15|2013-08-22|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen| WO2013120500A1|2012-02-15|2013-08-22|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen| WO2013120497A1|2012-02-15|2013-08-22|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein| WO2013120499A1|2012-02-15|2013-08-22|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen| SG10201710631RA|2012-03-27|2018-02-27|Curevac Ag|Artificial nucleic acid molecules for improved protein or peptide expression| MX357803B|2012-03-27|2018-07-24|Curevac Ag|Artificial nucleic acid molecules.| KR20140139101A|2012-03-27|2014-12-04|큐어백 게엠바하|Artificial nucleic acid molecules comprising a 5'top utr| EP3498267A1|2012-05-25|2019-06-19|CureVac AG|Reversible immobilization and/or controlled release of nucleic acid containing nanoparticles by polymer coatings| CA2892529A1|2012-11-26|2014-05-30|Moderna Therapeutics, Inc.|Terminally modified rna| US9974845B2|2013-02-22|2018-05-22|Curevac Ag|Combination of vaccination and inhibition of the PD-1 pathway| AU2014310931B2|2013-08-21|2019-12-19|Curevac Ag|Rabies vaccine| UA120595C2|2013-08-21|2020-01-10|Куревак Аг|Composition and vaccine for treating lung cancer| RU2733424C2|2013-08-21|2020-10-01|Куревак Аг|Method for increasing the expression of encoded rna proteins| CN105473157A|2013-08-21|2016-04-06|库瑞瓦格股份公司|Combination vaccine| AU2014310934B2|2013-08-21|2019-09-12|Curevac Ag|Respiratory syncytial virus vaccine| SG11201510751YA|2013-08-21|2016-03-30|Curevac Ag|Composition and vaccine for treating prostate cancer| WO2015062738A1|2013-11-01|2015-05-07|Curevac Gmbh|Modified rna with decreased immunostimulatory properties| CN105874072A|2013-12-30|2016-08-17|库瑞瓦格股份公司|Artificial nucleic acid molecules| CA2927254A1|2013-12-30|2015-07-09|Curevac Ag|Artificial nucleic acid molecules| SG10201805660WA|2013-12-30|2018-08-30|Curevac Ag|Methods for rna analysis| ES2754239T3|2014-03-12|2020-04-16|Curevac Ag|Combination of vaccination and OX40 agonists| WO2015149944A2|2014-04-01|2015-10-08|Curevac Gmbh|Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant| EP3155129B1|2014-06-10|2019-01-16|CureVac AG|Method for enhancing rna production| EP3708668A1|2014-12-12|2020-09-16|CureVac AG|Artificial nucleic acid molecules for improved protein expression| US20170326225A1|2014-12-16|2017-11-16|Curevac Ag|Ebolavirus and marburgvirus vaccines| WO2016107877A1|2014-12-30|2016-07-07|Curevac Ag|Artificial nucleic acid molecules| WO2016165825A1|2015-04-13|2016-10-20|Curevac Ag|Method for producing rna compositions| EP3283125B1|2015-04-17|2021-12-29|CureVac Real Estate GmbH|Lyophilization of rna| EP3326641B1|2015-04-22|2019-06-26|CureVac AG|Rna containing composition for treatment of tumor diseases| CN108064307A|2015-04-30|2018-05-22|库瑞瓦格股份公司|The method for carrying out in-vitro transcription using the restriction enzyme of immobilization| SG11201708867UA|2015-04-30|2017-11-29|Curevac Ag|Immobilized polypolymerase| DK3294885T3|2015-05-08|2020-08-10|Curevac Real Estate Gmbh|METHOD OF PREPARING RNA| DK3294326T3|2015-05-15|2021-05-31|Curevac Ag|PRIME-BOOST REGIMES INCLUDING SUBMISSION OF AT LEAST ONE MRNA CONSTRUCTION| CN107635587A|2015-05-20|2018-01-26|库瑞瓦格股份公司|Include long-chain RNA dry powder compositions| EP3297682B1|2015-05-20|2021-07-14|CureVac AG|Dry powder composition comprising long-chain rna| WO2016193226A1|2015-05-29|2016-12-08|Curevac Ag|Method for adding cap structures to rna using immobilized enzymes| PT3303583T|2015-05-29|2020-07-07|Curevac Ag|A method for producing and purifying rna, comprising at least one step of tangential flow filtration| EP3310384A1|2015-06-17|2018-04-25|CureVac AG|Vaccine composition| WO2017001058A1|2015-07-01|2017-01-05|Curevac Ag|Method for analysis of an rna molecule| WO2017009376A1|2015-07-13|2017-01-19|Curevac Ag|Method of producing rna from circular dna and corresponding template dna| EP3331555A1|2015-08-05|2018-06-13|CureVac AG|Epidermal mrna vaccine| EP3332019B1|2015-08-07|2019-12-18|CureVac AG|Process for the in vivo production of rna in a host cell| EP3334828B1|2015-08-10|2020-10-28|CureVac Real Estate GmbH|Method of increasing the replication of a circular dna molecule| CA2992801A1|2015-08-28|2017-03-09|Curevac Ag|Artificial nucleic acid molecules|CA2807552A1|2010-08-06|2012-02-09|Moderna Therapeutics, Inc.|Engineered nucleic acids and methods of use thereof| WO2012019630A1|2010-08-13|2012-02-16|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded protein| CN111671918A|2011-06-08|2020-09-18|川斯勒佰尔公司|Lipid nanoparticle compositions and methods for MRNA delivery| US9464124B2|2011-09-12|2016-10-11|Moderna Therapeutics, Inc.|Engineered nucleic acids and methods of use thereof| US20150307542A1|2012-10-03|2015-10-29|Moderna Therapeutics, Inc.|Modified nucleic acid molecules and uses thereof| US10501513B2|2012-04-02|2019-12-10|Modernatx, Inc.|Modified polynucleotides for the production of oncology-related proteins and peptides| US9283287B2|2012-04-02|2016-03-15|Moderna Therapeutics, Inc.|Modified polynucleotides for the production of nuclear proteins| WO2013120499A1|2012-02-15|2013-08-22|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a polysequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen| WO2013120498A1|2012-02-15|2013-08-22|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen| WO2013120500A1|2012-02-15|2013-08-22|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen| WO2013120497A1|2012-02-15|2013-08-22|Curevac Gmbh|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein| MX357803B|2012-03-27|2018-07-24|Curevac Ag|Artificial nucleic acid molecules.| SG10201710631RA|2012-03-27|2018-02-27|Curevac Ag|Artificial nucleic acid molecules for improved protein or peptide expression| KR20140139101A|2012-03-27|2014-12-04|큐어백 게엠바하|Artificial nucleic acid molecules comprising a 5'top utr| US9878056B2|2012-04-02|2018-01-30|Modernatx, Inc.|Modified polynucleotides for the production of cosmetic proteins and peptides| AU2013243952A1|2012-04-02|2014-10-30|Modernatx, Inc.|Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins| EP2858679B1|2012-06-08|2021-02-24|Translate Bio, Inc.|Pulmonary delivery of mrna to non-lung target cells| CA2892529A1|2012-11-26|2014-05-30|Moderna Therapeutics, Inc.|Terminally modified rna| US9974845B2|2013-02-22|2018-05-22|Curevac Ag|Combination of vaccination and inhibition of the PD-1 pathway| KR20210122917A|2013-03-14|2021-10-12|샤이어 휴먼 지네틱 테라피즈 인크.|Cftr mrna compositions and related methods and uses| MX2015011947A|2013-03-14|2015-12-01|Shire Human Genetic Therapies|Methods and compositions for delivering mrna coded antibodies.| DK2972360T3|2013-03-15|2018-05-22|Translate Bio Inc|SYNERGISTIC IMPROVEMENT OF DELIVERY OF NUCLEIC ACIDS THROUGH MIXED FORMULATIONS| US8980864B2|2013-03-15|2015-03-17|Moderna Therapeutics, Inc.|Compositions and methods of altering cholesterol levels| CN105473157A|2013-08-21|2016-04-06|库瑞瓦格股份公司|Combination vaccine| RU2733424C2|2013-08-21|2020-10-01|Куревак Аг|Method for increasing the expression of encoded rna proteins| AU2014310934B2|2013-08-21|2019-09-12|Curevac Ag|Respiratory syncytial virusvaccine| AU2014310931B2|2013-08-21|2019-12-19|Curevac Ag|Rabies vaccine| JP6751344B2|2013-09-13|2020-09-02|ジェネンテック, インコーポレイテッド|Methods and compositions containing purified recombinant polypeptides| EP3052106A4|2013-09-30|2017-07-19|ModernaTX, Inc.|Polynucleotides encoding immune modulating polypeptides| BR112016007255A2|2013-10-03|2017-09-12|Moderna Therapeutics Inc|polynucleotides encoding low density lipoprotein receptor| WO2015062738A1|2013-11-01|2015-05-07|Curevac Gmbh|Modified rna with decreased immunostimulatory properties| CN105874072A|2013-12-30|2016-08-17|库瑞瓦格股份公司|Artificial nucleic acid molecules| CA2927254A1|2013-12-30|2015-07-09|Curevac Ag|Artificial nucleic acid molecules| SG10201805660WA|2013-12-30|2018-08-30|Curevac Ag|Methods for rna analysis| EP3415629A1|2013-12-30|2018-12-19|CureVac AG|Artificial nucleic acid molecules| ES2754239T3|2014-03-12|2020-04-16|Curevac Ag|Combination of vaccination and OX40 agonists| WO2015149944A2|2014-04-01|2015-10-08|Curevac Gmbh|Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant| JP6581969B2|2014-04-24|2019-09-25|アキュルナ株式会社|Method for improving protein expression and composition for protein expression| EP3155129B1|2014-06-10|2019-01-16|CureVac AG|Method for enhancing rna production| EP3041948B1|2014-11-10|2019-01-09|Modernatx, Inc.|Alternative nucleic acid molecules containing reduced uracil content and uses thereof| EP3227320B1|2014-12-03|2019-07-03|Florida State University Research Foundation, Inc.|Modified fibroblast growth factor 1polypeptides with increased binding affinity for heparin and associated methods| EP3708668A1|2014-12-12|2020-09-16|CureVac AG|Artificial nucleic acid molecules for improved protein expression| WO2016107877A1|2014-12-30|2016-07-07|Curevac Ag|Artificial nucleic acid molecules| WO2016138340A1|2015-02-27|2016-09-01|Saint Louis University|Tumor suppressor sall1 as a therapeutic agent for treating cancer| WO2016165825A1|2015-04-13|2016-10-20|Curevac Ag|Method for producing rna compositions| EP3283125B1|2015-04-17|2021-12-29|CureVac Real Estate GmbH|Lyophilization of rna| EP3326641B1|2015-04-22|2019-06-26|CureVac AG|Rna containing composition for treatment of tumor diseases| GB201508025D0|2015-05-11|2015-06-24|Ucl Business Plc|Fabry disease gene therapy| CN107635587A|2015-05-20|2018-01-26|库瑞瓦格股份公司|Include long-chain RNA dry powder compositions| EP3297682B1|2015-05-20|2021-07-14|CureVac AG|Dry powder composition comprising long-chain rna| PT3303583T|2015-05-29|2020-07-07|Curevac Ag|A method for producing and purifying rna, comprising at least one step of tangential flow filtration| EP3313829A1|2015-06-29|2018-05-02|Acuitas Therapeutics Inc.|Lipids and lipid nanoparticle formulations for delivery of nucleic acids| WO2017009376A1|2015-07-13|2017-01-19|Curevac Ag|Method of producing rna from circular dna and corresponding template dna| TW201718638A|2015-07-21|2017-06-01|現代治療公司|Infectious disease vaccines| TW201718849A|2015-08-04|2017-06-01|再生元醫藥公司|Taurine supplemented cell culture medium and methods of use| CA2998810A1|2015-09-17|2017-03-23|Modernatx, Inc.|Compounds and compositions for intracellular delivery of therapeutic agents| US10849920B2|2015-10-05|2020-12-01|Modernatx, Inc.|Methods for therapeutic administration of messenger ribonucleic acid drugs| WO2017059902A1|2015-10-07|2017-04-13|Biontech Rna Pharmaceuticals Gmbh|3' utr sequences for stabilization of rna| WO2017064146A1|2015-10-12|2017-04-20|Curevac Ag|Automated method for isolation, selection and/or detection of microorganisms or cells comprised in a solution| WO2017066781A1|2015-10-16|2017-04-20|Modernatx, Inc.|Mrna cap analogs with modified phosphate linkage| WO2017066791A1|2015-10-16|2017-04-20|Modernatx, Inc.|Sugar substituted mrna cap analogs| CA3001014A1|2015-10-16|2017-04-20|Modernatx, Inc.|Mrna cap analogs and methods of mrna capping| WO2017066789A1|2015-10-16|2017-04-20|Modernatx, Inc.|Mrna cap analogs with modified sugar| WO2017066782A1|2015-10-16|2017-04-20|Modernatx, Inc.|Hydrophobic mrna cap analogs| EP3718565A1|2015-10-22|2020-10-07|ModernaTX, Inc.|Respiratory virus vaccines| WO2017070613A1|2015-10-22|2017-04-27|Modernatx, Inc.|Human cytomegalovirus vaccine| WO2017070624A1|2015-10-22|2017-04-27|Modernatx, Inc.|Tropical disease vaccines| EP3368507A1|2015-10-28|2018-09-05|Acuitas Therapeutics, Inc.|Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids| AU2016377681B2|2015-12-22|2021-05-13|Modernatx, Inc.|Compounds and compositions for intracellular delivery of agents| EP3394280A1|2015-12-23|2018-10-31|CureVac AG|Method of rna in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof| DK3440206T3|2016-04-08|2020-11-23|Translate Bio Inc|MULTIMER CODING NUCLEIC ACID AND ITS USES| US11141474B2|2016-05-04|2021-10-12|Curevac Ag|Artificial nucleic acid molecules encoding a norovirus antigen and uses thereof| EP3452101A2|2016-05-04|2019-03-13|CureVac AG|Rna encoding a therapeutic protein| JP2019516719A|2016-05-18|2019-06-20|モデルナティーエックス, インコーポレイテッド|Polynucleotide encoding alpha-galactosidase A for the treatment of Fabry disease| CN105920585B|2016-06-13|2019-07-09|浙江生创精准医疗科技有限公司|MCP-1 is independent or combines the purposes in treatment liver fibrosis with other cell factors| AU2017283479A1|2016-06-13|2018-12-20|Translate Bio, Inc.|Messenger RNA therapy for the treatment of ornithine transcarbamylase deficiency| AU2017286606A1|2016-06-14|2018-12-13|Modernatx, Inc.|Stabilized formulations of lipid nanoparticles| EP3528821A4|2016-10-21|2020-07-01|ModernaTX, Inc.|Human cytomegalovirus vaccine| WO2018089540A1|2016-11-08|2018-05-17|Modernatx, Inc.|Stabilized formulations of lipid nanoparticles| US20190263906A1|2016-11-10|2019-08-29|Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts|Immune modulators for reducing immune-resistance in melanoma and other proliferative diseases| US20200149026A1|2016-12-08|2020-05-14|Curevac Ag|Rnas for wound healing| MA50335A|2016-12-08|2020-08-19|Modernatx Inc|NUCLEIC ACID VACCINES AGAINST RESPIRATORY VIRUSES| WO2018115527A2|2016-12-23|2018-06-28|Curevac Ag|Mers coronavirus vaccine| EP3582790A4|2017-02-16|2020-11-25|ModernaTX, Inc.|High potency immunogenic compositions| CA3054062A1|2017-02-27|2018-08-30|Translate Bio, Inc.|Novel codon-optimized cftr mrna| AU2018234692A1|2017-03-15|2019-09-19|Modernatx, Inc.|Compounds and compositions for intracellular delivery of therapeutic agents| EP3595727A1|2017-03-15|2020-01-22|ModernaTX, Inc.|Lipid nanoparticle formulation| CA3063531A1|2017-05-16|2018-11-22|Translate Bio, Inc.|Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr| CN107245510B|2017-05-23|2020-10-30|中山大学附属第三医院|Kit and method for tracing immune cells| WO2018232120A1|2017-06-14|2018-12-20|Modernatx, Inc.|Compounds and compositions for intracellular delivery of agents| WO2019008001A1|2017-07-04|2019-01-10|Curevac Ag|Novel nucleic acid molecules| US20190010531A1|2017-07-06|2019-01-10|Regeneron Pharmaceuticals, Inc.|Cell culture process for making a glycoprotein| WO2019036638A1|2017-08-18|2019-02-21|Modernatx, Inc.|Methods of preparing modified rna| CN107590533B|2017-08-29|2020-07-31|中国科学院计算技术研究所|Compression device for deep neural network| WO2019046809A1|2017-08-31|2019-03-07|Modernatx, Inc.|Methods of making lipid nanoparticles| WO2019055807A1|2017-09-14|2019-03-21|Modernatx, Inc.|Zika virus rna vaccines| CA3084061A1|2017-12-20|2019-06-27|Translate Bio, Inc.|Improved composition and methods for treatment of ornithine transcarbamylase deficiency| EP3508499A1|2018-01-08|2019-07-10|iOmx Therapeutics AG|Antibodies targeting, and other modulators of, an immunoglobulin gene associated with resistance against anti-tumour immune responses, and uses thereof| WO2020061367A1|2018-09-19|2020-03-26|Modernatx, Inc.|Compounds and compositions for intracellular delivery of therapeutic agents| EP3852728A1|2018-09-20|2021-07-28|Modernatx, Inc.|Preparation of lipid nanoparticles and methods of administration thereof| EP3917656A1|2019-01-31|2021-12-08|Modernatx, Inc.|Vortex mixers and associated methods, systems, and apparatuses thereof| EP3917503A1|2019-01-31|2021-12-08|Modernatx, Inc.|Methods of preparing lipid nanoparticles| CA3146023A1|2019-07-05|2021-01-14|Iomx Therapeutics Ag|Antibodies binding igc2 of igsf11and uses thereof| CN112625097B|2019-08-27|2022-02-08|上海交通大学|Ganoderma lucidum immunomodulatory protein mutant and application thereof| EP3822288A1|2019-11-18|2021-05-19|Deutsches Krebsforschungszentrum, Stiftung des öffentlichen Rechts|Antibodies targeting, and other modulators of, the cd276 antigen, and uses thereof| US11241493B2|2020-02-04|2022-02-08|Curevac Ag|Coronavirus vaccine| WO2021163190A1|2020-02-10|2021-08-19|University Of Utah Research Foundation|High molecular weight heparin compositions and methods for diagnosing, treating and monitoring eosinophil mediated inflammatory diseases| WO2021191865A1|2020-03-26|2021-09-30|Dusa Pharmaceuticals, Inc.|Management of dermal neurofibromatosis lesions| WO2021204175A1|2020-04-09|2021-10-14|Suzhou Abogen Biosciences Co., Ltd.|Lipid nanoparticle composition| WO2021204179A1|2020-04-09|2021-10-14|Suzhou Abogen Biosciences Co., Ltd.|Nucleic acid vaccines for coronavirus| WO2022002040A1|2020-06-30|2022-01-06|Suzhou Abogen Biosciences Co., Ltd.|Lipid compounds and lipid nanoparticle compositions| WO2022008027A1|2020-07-06|2022-01-13|Iomx Therapeutics Ag|Antibodies binding igv of igsf11and uses thereof| WO2022037652A1|2020-08-20|2022-02-24|Suzhou Abogen Biosciences Co., Ltd.|Lipid compounds and lipid nanoparticle compositions| CN112175988B|2020-09-15|2021-06-15|广东省农业科学院蔬菜研究所|Application of cucumber phloem lectin CsPL1 in resisting melon epidemic disease| CN112516288A|2020-12-22|2021-03-19|西藏阿那达生物医药科技有限责任公司|Application of N-glycosylation modified ganoderma lucidum immunomodulatory protein|
法律状态:
2018-07-05| HB| Alteration of name in register|Owner name: CUREVAC AG Free format text: FORMER NAME(S): CUREVAC GMBH | 2018-09-13| FGA| Letters patent sealed or granted (standard patent)|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 PCT/EP2012/000671|WO2013120497A1|2012-02-15|2012-02-15|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein| AUPCT/EP2012/000671||2012-02-15|| PCT/EP2013/000461|WO2013120629A1|2012-02-15|2013-02-15|Nucleic acid comprising or coding for a histone stem-loop and a poly sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|